Technical Library: beads (Page 1 of 1)

Implementing Robust Bead Probe Test Processes into Standard Pb-Free Assembly

Technical Library | 2015-08-20 15:18:38.0

Increasing system integration and component densities continue to significantly reduce the opportunity to access nets using standard test points. Over time the size of test points has been drastically reduced (as small as 0.5 mm in diameter) but current product design parameters have created space and access limitations that remove even the option for these test points. Many high speed signal lines have now been restricted to inner layers only. Where surface traces are still available for access, bead probe technology is an option that reduces test point space requirements as well as their effects on high speed nets and distributes mechanical loading away from BGA footprints enabling test access and reducing the risk of mechanical defects associated with the concentration of ICT spring forces under BGA devices. Building on Celestica's previous work characterizing contact resistance associated with Pr-free compatible surface finishes and process chemistry; this paper will describe experimentation to define a robust process window for the implementation of bead probe and similar bump technology that is compatible with standard Pb-free assembly processes. Test Vehicle assembly process, test methods and "Design of Experiments" will be described. Bead Probe formation and deformation under use will also be presented along with selected results.

Celestica Corporation

An Investigation into Alternative Methods of Drying Moisture Sensitive Devices

Technical Library | 2021-11-26 14:34:07.0

The use of desiccant bags filled with Silica Sand and or Clay beads used in conjunction with a Moisture Barrier Bag to control moisture for storage of printed circuit boards has long been an accepted practice and standard from both JEDEC and IPC organizations. Additionally, the use heated ovens for baking off moisture using the evaporation process has also been a long#2;standing practice from these organizations. This paper on alternative drying methods will be accompanied by completed independent, unbiased tests conducted by Vinny Nguyen, an engineering student (now graduated) from San Jose State University. The accompanied paper will examine the performance levels of different technologies of desiccant bags to control moisture in enclosed spaces. The tests and equipment set were reviewed by an engineer and consultant to the Lockheed Martin Aerospace Division and the IPC - TM-650 2.6.28 test method was review by engineer from pSemi. The tests were designed to mimic performance tests outlined in Mil Spec 3464, which both IPC and JEDEC have adopted for their respective standards. The test examined variables including absorption capacity rates, weight gain and release of moisture back into the enclosed area. The presentation will also address and highlight: • Similarities of PCBs and Heavy Equipment as it applies to Inspections, Causes of Failure, Types of Corrosion and Moisture Collection Points. • Performance Attributes of Different Desiccant Technologies as it applies to shape, texture, change outs, labeling and regeneration. • Venn Diagram of Electromechanical Failure with the circles 1. Current 2. Contamination 3. Humidity Presentation Available

Steel Camel

  1  

beads searches for Companies, Equipment, Machines, Suppliers & Information