Technical Library | 2016-01-12 11:09:47.0
In order to meet the increasing demand of device miniaturization, high speed, more memory, more function, low cost, and more flexibility in device design and manufacturing chain, underfilling has increasingly become an essential process for the good reliability of electronic devices. Filled capillary underfill has been selected for used in package-level where there is large thermal stress caused by CTE mismatch issue, but the underfill is usually not reworkable. Unfilled capillary underfill has been used for board-level application such as BGA/CSP, POP, WL-CSP where there is need for mechanical shock resistance, the underfill is usually reworkable.
Technical Library | 2014-04-11 16:03:15.0
In order to meet the increasing demand of device miniaturization, high speed, more memory, more function, low cost, and more flexibility in device design and manufacturing chain, underfilling has increasingly become an essential process for the good reliability of electronic devices. Filled capillary underfill has been selected for use in package-level where there is large thermal stress caused by CTE mismatch issue, but the underfill is usually not reworkable. Unfilled capillary underfill has been used for board-level application such as BGA/CSP, POP, WL-CSP where there is need for mechanical shock resistance, the underfill is usually reworkable.
Technical Library | 2016-05-30 22:24:00.0
As a part of series of studies on X-Ray inspection technology to quantify solder defects in BGA balls, we have conducted inspection of 3 level POP package by using a new AXI that capable of 3D-CT imaging. The new results are compared with the results of earlier AXI measurements. It is found that 3D measurements offer better defect inspection quality, lower false call and escapes.
Technical Library | 2015-03-04 10:56:26.0
As the proliferation of modern day electronics continues to drive miniaturization and functionality, electronic designers/assemblers face the issue of environmental exposure and uncommon applications never previously contemplated. This reality, coupled with the goal of reducing the environmental and health implications of the production and disposal of these devices, has forced manufacturers to reconsider the materials used in production. Furthermore, the need to increase package density and reduce costs has led to the rapid deployment of leadless packages such as QFN, POP, LGA, and Micro-BGA. In many cases, the manufacturers of these devices will recommend the use of no clean fluxes due to concerns over the ability to consistently remove flux residues from under and around these devices. These concerns, along with the need to implement a tin whisker mitigation strategy and/or increase environmental tolerance, have led to the conundrum of applying conformal coating over no clean residues.
Technical Library | 2021-12-16 01:48:41.0
Package-on-Package (PoP) technology is widely used in mobile devices due to its simple design, lower cost and faster time to market. Warpage characteristic and requirement of PoP package becomes critical to ensure both the top and bottom package can be mounted with minimal yield lost. With this challenge in placed, iNEMI has been working relentlessly to fingerprint the current PoP package technology warpage characteristic and to establish some key learning for packaging technologies. The work also extended to understand the basic requirement needed for successful PoP stacking by analyzing the warpage data obtained and formulate a simple analytical equation to explain the true warpage requirement for PoP packaging.
Technical Library | 2021-12-16 01:52:32.0
Package on Packages (PoP) find use in applications that require high performance with increased memory density. One of the greatest benefits of PoP technology is the elimination of the expensive and challenging task of routing high-speed memory lines from under the processor chip out to memory chip in separate packages. Instead, the memory sits on top of the processor and the connections are automatically made during assembly. For this reason PoP technology has gained wide acceptance in cell phones and other mobile applications. PoP technology can be assembled using one-pass and two-pass assembly processes. In the one-pass technique the processor is first mounted to the board, the memory is mounted to the processor and the finished board is then run through the reflow oven in a single pass. The two-pass technique has an intermediate step in which the memory is first mounted onto the processor.
Technical Library | 2007-08-02 13:24:23.0
This paper presents the results of a joint - three way study between Amkor Technology, Panasonic Factory Solutions and Spansion in the area of package on package (PoP) board level reliability (BLR) (...) The scope of this paper is to cover the already popular 14 x 14mm PoP package size that provides a 152 pin stacked interface which supports a high level of flexibility in the memory architecture for multimedia requirements.
Technical Library | 2021-12-16 01:45:05.0
In the 1990's, both BGA (Ball Grid Array) and CSP (Chip Size Package) are entering their end in the front-end packaging materials and process technology. Both BGA and CSP like SMD (Surface Mount Device) from the I 980's and THD (Through-Hole mount Device) from the 1970's are reaching its own impasse in terms of maximizing its electrical, mechanical, and thermal performances, size, weight, and reliability.
Technical Library | 2024-01-16 22:29:59.0
Miniaturization continues to be a driving force in both integrated circuit packaging and printed circuit board laminate technology. In addition to decreasing component pitch (lead to lead spacing), utilization of the vertical space by stacking packages has found wide acceptance by both designers and manufactures of electronics alike. Lead free Package on Package (PoP) technology represents one of the latest advancements in vertical electronics packaging integration and has become the preferred technology for mobile hand held electronics applications. TT Electronics in Perry, Ohio has developed the capability to assemble and rework numerous "state of the art" packaging technologies. This paper will focus on the essential engineering development activities performed to demonstrate TT Electronics' ability to both assemble and rework PoP components.
Technical Library | 2018-11-07 03:31:04.0
Generally speaking, there are not many cases of insufficient solder and solder short in BGA soldering, but it is not impossible. Here we discuss some elements may cause it