Technical Library: bga ball cracked during smt process (Page 1 of 1)

What is the application of moisture proof dry cabinet?

Technical Library | 2019-04-11 05:59:57.0

Are your MSD safely stored? As humidity is found to be one of the key reasons for rejected products, many manufacturers are taking measures to control the humidity to increase their production efficiency and save the cost. In the industries of semi-conductor and electronics, the key section in which the rejected products are most probably to be made is that during the heating process of SMT, the IC(e.g.,PBGA,BGA,or TQFD) is likely to crack and thus cause non-effective welding because of the humidity. Climatest Symor® auto dry cabinet is the best solution to avoid the cracking and non#2;effective welding by dehumidifying the surface of your components. The dry unit can be used for 20 years without replacement,and controller is calibration free within 5 years.We attach dry cabinet application with different humidity range,welcome to download.

Symor Instrument Equipment Co.,Ltd

What is usage of Electronic dry cabinet?

Technical Library | 2019-08-19 23:55:20.0

Electronic dry cabinet for MSD storage Humidity is one of the key reasons for rejected products, many manufacturers are taking measures to control the humidity to increase production efficiency and save cost. In semiconductor and electronic industry, the key section of rejected products mostly happen during SMT heating process, Climatest Symor® auto dry cabinet is a superior solution to avoid the cracking. Warranty: two years with lifetime technical support

Symor Instrument Equipment Co.,Ltd

Optimising Solder Paste Volume for Low Temperature Reflow of BGA Packages

Technical Library | 2020-09-23 21:37:25.0

The need to minimise thermal damage to components and laminates, to reduce warpage-induced defects to BGA packages, and to save energy, is driving the electronics industry towards lower process temperatures. For soldering processes the only way that temperatures can be substantially reduced is by using solders with lower melting points. Because of constraints of toxicity, cost and performance, the number of alloys that can be used for electronics assembly is limited and the best prospects appear to be those based around the eutectic in the Bi-Sn system, which has a melting point of about 139°C. Experience so far indicates that such Bi-Sn alloys do not have the mechanical properties and microstructural stability necessary to deliver the reliability required for the mounting of BGA packages. Options for improving mechanical properties with alloying additions that do not also push the process temperature back over 200°C are limited. An alternative approach that maintains a low process temperature is to form a hybrid joint with a conventional solder ball reflowed with a Bi-Sn alloy paste. During reflow there is mixing of the ball and paste alloys but it has been found that to achieve the best reliability a proportion of the ball alloy has to be retained in the joint, particular in the part of the joint that is subjected to maximum shear stress in service, which is usually the area near the component side. The challenge is then to find a reproducible method for controlling the fraction of the joint thickness that remains as the original solder ball alloy. Empirical evidence indicates that for a particular combination of ball and paste alloys and reflow temperature the extent to which the ball alloy is consumed by mixing with the paste alloy is dependent on the volume of paste deposited on the pad. If this promising method of achieving lower process temperatures is to be implemented in mass production without compromising reliability it would be necessary to have a method of ensuring the optimum proportion of ball alloy left in the joint after reflow can be consistently maintained. In this paper the author explains how the volume of low melting point alloy paste that delivers the optimum proportion of retained ball alloy for a particular reflow temperature can be determined by reference to the phase diagrams of the ball and paste alloys. The example presented is based on the equilibrium phase diagram of the binary Bi-Sn system but the method could be applied to any combination of ball and paste alloys for which at least a partial phase diagram is available or could be easily determined.

Nihon Superior Co. Ltd

Solving the ENIG Black Pad Problem: An ITRI Report on Round 2

Technical Library | 2013-01-17 15:37:21.0

A problem exists with electroless nickel / immersion gold (ENIG) surface finish on some pads, on some boards, that causes the solder joint to separate from the nickel surface, causing an open. The solder has wet and dissolved the gold. A weak tin to nickel intermetallic bond initially occurs, but the intermetallic bond cracks and separates when put under stress. Since the electroless nickel / immersion gold finish performs satisfactory in most applications, there had to be some area within the current chemistry process window that was satisfactory. The problem has been described as a 'BGA Black Pad Problem' or by HP as an 'Interfacial Fracture of BGA Packages…'[1]. A 24 variable experiment using three different chemistries was conducted during the ITRI (Interconnect Technology Research Institute) ENIG Project, Round 1, to investigate what process parameters of the chemical matrix were potentially satisfactory to use and which process parameters of the chemical matrix need to be avoided. The ITRI ENIG Project has completed Round 1 of testing and is now in the process of Round 2 TV (Test Vehicle) build.

Celestica Corporation

Effects of Package Warpage on Head-in-Pillow Defect

Technical Library | 2017-07-06 15:50:17.0

Head-in-pillow (HiP) is a BGA defect which happens when solder balls and paste can't contact well during reflow soldering. Package warpage was one of the major reasons for HiP formation. In this paper, package warpage was measured and simulated. It was found that the package warpage was sensitive to the thickness of inside chips. A FEM method considering viscoelastic property of mold compound was introduced to simulate package warpage. The CTE mismatch was found contributes to more than 90% of the package warpage value when reflowing at the peak temperature. A method was introduced to measure the warpage threshold, which is the smallest warpage value that may lead to HiP. The results in different atmospheres showed that the warpage threshold was 50μm larger in N2 than that in air, suggesting that under N2 atmosphere the process window for HiP defects was larger than that under air, which agreed with the experiments.

Samsung Electronics

  1  

bga ball cracked during smt process searches for Companies, Equipment, Machines, Suppliers & Information

KingFei SMT Tech
KingFei SMT Tech

Main Products: 1. Original new and Original Used SMT/AI Spare Parts. 2. SMT Equipments And Related Machine( SMT Calibration, SMT Feeder Carts,Conveyer etc.) 3. Maintenace and Repair Service Pre-Sales Service Provide details ab

Manufacturer's Representative / Manufacturer / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

3 Road Xintang, Fuhai Street,Fuyong
Shenzhen, 30 China

Phone: 13713862102

December 2024 Auction

High Precision Fluid Dispensers


High Throughput Reflow Oven
Thermal Interface Material Dispensing

Best Reflow Oven


SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...