Technical Library: bga misalignment (Page 1 of 1)

A PROCEDURE TO DETERMINE HEAD-IN-PILLOW DEFECT AND ANALYSIS OF CONTRIBUTING FACTORS

Technical Library | 2020-07-02 01:14:44.0

Head-in-Pillow (HIP) defects are a growing concern in the electronics industry. These defects are usually believed to be the result of several factors, individually or in combination. Some of the major contributing factors include: surface quality of the BGA spheres, activity of the paste flux, improper placement / misalignment of the components, a non-optimal reflow profile, and warpage of the components. To understand the role of each of these factors in producing head-in-pillow defects and to find ways to mitigate them, we have developed two in-house tests.

Cookson Electronics

Compatibility of Cleaning Agents With Nano-Coated Stencils

Technical Library | 2013-03-12 13:25:18.0

High density and miniaturized circuit assemblies challenge the solder paste printing process. The use of small components such as 0201, 01005 and μBGA devices require good paste release to prevent solder paste bridging and misalignment. When placing these miniaturized components, taller paste deposits are often required. To improve solder paste deposition, a nano-coating is applied to laser cut stencils to improve transfer efficiency. One concern is the compatibility of the nano-coating with cleaning agents used in understencil wipe and stencil cleaning. The purpose of this research is to test the chemical compatibility of common cleaning agents used in understencil wipe and stencil cleaning processes.Compatibility of Cleaning Agents With Nano-Coated Stencils

KYZEN Corporation

  1  

bga misalignment searches for Companies, Equipment, Machines, Suppliers & Information