Technical Library | 2023-01-17 17:22:28.0
The impact of voiding on the solder joint integrity of ball grid arrays (BGAs)/chip scale packages (CSPs) can be a topic of lengthy and energetic discussion. Detailed industry investigations have shown that voids have little effect on solder joint integrity unless they fall into specific location/geometry configurations. These investigations have focused on thermal cycle testing at 0°C-100°C, which is typically used to evaluate commercial electronic products. This paper documents an investigation to determine the impact of voids in BGA and CSP components using thermal cycle testing (-55°C to +125°C) in accordance with the IPC- 9701 specification for tin/lead solder alloys. This temperature range is more typical of military and other high performance product use environments. A proposed BGA void requirement revision for the IPC-JSTD-001 specification will be extracted from the results analysis.
Technical Library | 2007-02-01 09:36:26.0
Purpose: Compare the Surface Insulation Resistance of reworked BGA Test samples made with standard solder balls using a flux only reattachment and samples made including the StencilQuik™ product from Best Inc. with solder balls using a flux only reattachment.
Technical Library | 2007-02-01 10:08:40.0
The increased replacement of high lead count SMT devices with BGAs and other high ball count area array packages has brought increased challenges to PCB rework and repair. Often solder mask areas surrounding BGA pad areas are damaged when components are removed.
Technical Library | 2007-02-01 09:57:15.0
The rapid assimilation of Ball Grid Array (BGA) and other Area Array Package technology in the electronics industry is due to the fact that this package type allows for a greater I/O count in a smaller area while maintaining a pitch that allows for ease of manufacture.
Technical Library | 2007-06-21 17:03:16.0
The rapid assimilation of Ball Grid Array (BGA) and other Area Array Package technology in the electronics industry is due to the fact that this package type allows for a greater I/O count in a smaller area while maintaining a pitch that allows for ease of manufacture (...) While there have been several studies comparing these two attachment methods, this study highlights the effect of rework technique on the electrical characteristics and reliability of reworked BGAs.
Technical Library | 2016-01-21 16:52:27.0
Solder paste has long been viewed as "black magic". This "black magic" can easily be dispelled through a solder paste evaluation. Unfortunately, solder paste evaluation can be a challenge for electronic assemblers. Interrupting the production schedule to perform an evaluation is usually the first hurdle. Choosing the solder paste properties to test is simple, but testing for these properties can be difficult. Special equipment or materials may be required depending upon the tests that are chosen. Once the testing is complete, how does one make the decision to choose a solder paste? Is the decision based on gut feel or hard data?This paper presents a process for evaluating solder pastes using a variety of methods. These methods are quick to run and are challenging, revealing the strengths and weaknesses of solder pastes. Methods detailed in this paper include: print volume, stencil life, response to pause, open time, tack force over time, wetting, solder balling, graping, voiding, accelerated aging, and others.
Technical Library | 2013-01-17 15:34:33.0
The use of an electroless nickel, immersion gold (ENIG) surface finish comes with the inherent potential risk of Black Pad failures that can cause fracture embrittlement at the interface between the solder and the metal pad. As yet, there is no conclusive agreed solution to effectively eliminate Black Pad failures. The case studies presented are intended to add to the understanding of the Black Pad failure mechanism and to identify both the plating and the subsequent assembly processes and conditions that can help to prevent the likelihood of Black Pad occurring.
Technical Library | 2013-12-27 10:39:21.0
The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.
Technical Library | 2016-11-30 21:30:50.0
Mid-chip solder balling is a defect typically associated with solder paste exhibiting poor hot slump and/or insufficient wetting during the reflow soldering process, resulting in paste flowing under the component or onto the solder resist. Once molten, this solder is compressed and forced to the side of the component, causing mid-chip solder balling.This paper documents the experimental work performed to further understand the impact on mid-chip solder balling from both the manufacturing process and the flux chemistry.
Technical Library | 2015-04-16 16:11:43.0
Solder ball height inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height inspection tools such as laser profiling, fringe projection and confocal microscopy are expensive, require complicated setup and are slow, which makes them difficult to use in a real-time manufacturing setting. Therefore, a reliable, in-line ball height measurement method is needed for inspecting units undergoing assembly. (...) In this paper, an automatic, stereo vision based, in-line ball height inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement.