Technical Library | 2014-03-13 15:25:01.0
A student competition paper at Budapest University of Technology And Economics, Department of Electronics Technology gives background, covers stencil design and discusses stencils intended for pin in paste application. The stencil applied for depositing the solder paste is a thin, 75–200 µm thick metal foil, on which apertures are formed according to the solder pads on the printed circuit board. Stencil printing provides a fast, mass solder paste deposition process; relatively expensive, appropriate and recommended for mass production.
Technical Library | 2023-11-14 19:52:11.0
The continuous drive in the Electronics industry to build new and innovative products has caused competitive design companies to develop assemblies with consolidated PCB designs, decreased physical sizes, and increased performance characteristics. As a result of these new designs, manufacturers of electronics are forced to contend with many challenges. One of the most significant challenges being the processing of thru-hole components on high thermal mass PCBs having the potential to exceed 20 layers in thicknesses and have copper mass contents of over 40oz. High thermal mass PCBs, coupled with the use of mixed technologies, decreased component spacing, and the change from Tin Lead Solder to Lead Free Alloys has lead many manufacturing facilities to purchase advanced soldering equipment to process challenging assemblies with a high degree of repeatability.
Technical Library | 2010-09-23 20:23:37.0
Methods of effective and ecological recycling of printed circuit boards (PCBs) are searched all over the world at this time. The material composition and temperature properties of PCB are necessary to be known for an optimal recycling technology. For thi
Technical Library | 2009-07-15 12:14:31.0
The increasing demand for smaller & smaller portable electrical devices is leading to the increasing usage of extremely small components in the SMT assembly lines. With the introduction of 01005 packages in mass production, all the different stages of the line are facing new challenges: from board design, through component placement to reflow process. Each stage introduces some specific types of defect which are considered impossible to repair due to the small size of the package. AOI has become an essential tool to enable good yield in the assembly of 01005.
Technical Library | 2014-03-20 12:37:39.0
In the beginning of SMT, Vapor Phase Soldering was the preferred reflow soldering technology because of its excellent heat transfer capabilities. There were also some disadvantages like fast temperature rise, nearly no influence on the temperature profiles and high costs. So the use of Vapor Phase Soldering was reduced to special applications with high mass or complex boards in low numbers (e.g. for military or aerospace use).
Technical Library | 2021-04-29 01:43:34.0
Since the 1980s the electronics industry has utilized ion chromatography (IC) analysis to understand the relationship of ions, and some organics, to product reliability. From component and board fabrication to complete electronic assemblies and their end-use environment, IC analysis has been the de facto method for evaluating ionic cleanliness of electronic hardware.
Technical Library | 2020-05-07 03:46:27.0
The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.
Technical Library | 2022-08-08 15:06:06.0
Selective soldering has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty however some types of challenging components require additional attention to ensure that optimum quality is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures, or solder pallets, often places additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors, can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues because of their beryllium copper base metal pins. Key Terms: Selective soldering, drop-jet fluxing, sustained preheating, flux migration, adjacent clearance, lead-to-hole aspect ratio, lead projection, thermal reliefs, gold embrittlement, solderability testing.
Technical Library | 2016-03-17 19:09:46.0
The rapid growth of electronic devices across the globe is driving manufacturers to enhance high-speed mass production techniques in the PCB assembly arena. As manufacturers drive to reduce costs while maximizing production by expanding facilities, updating automation equipment, or implementing lean six sigma techniques, the potential to build scrap product or rework printed circuit boards increases dramatically.Manufacturers have two general paths to reduce the costs of high-speed printed circuit board assembly production. The first path is to reduce cost by focusing on high quality printing and mounting. The other, increasingly popular option is to utilize low-cost materials. In either case, the baseline must provide a consistent high-speed solder paste printing method, which considers the fill, snap-off, and cleaning processes.Building on our expertise and testing, this paper will highlight the two trains of thought with specific focus on how low-cost materials affect print performance. It will also explore technologies, which can help provide stable, high-speed screen printing.
Technical Library | 2013-03-27 23:43:40.0
Vapor phase, once cast to the annals’ of history is making a comeback. Why? Reflow technology is well developed and has served the industry for many years, it is simple and it is consistent. All points are true – when dealing with the centre section of the bell curve. Today’s PCB manufacturers are faced with many designs which no longer fall into that polite category but rather test the process engineering groups with heavier and larger panels, large ground planes located in tricky places, component mass densities which are poorly distributed, ever changing Pb Free alloys and higher process temperatures. All the time the costs for the panels increase, availability of “process trial” boards diminishes and yields are expected to be extremely high with zero scrap rates. The final process in the assembly line has the capacity to secure all the value of the assembly or destroy it. If a panel is poorly soldered due to poor Oven setup or incorrect programming of the profile the recovery of the panel is at best expensive, at worst a loss. For these challenges people are turning to Vapor Phase.