Technical Library | 2014-05-29 13:48:14.0
Electronics packaging based on stress-engineered spring interconnects has the potential to enable integrated IC testing, fine pitch, and compliance not readily available with other technologies. We describe new spring contacts which simultaneously achieve low resistance ( 30 μm) in dense 2-D arrays (180 ~ 180-µm pitch). Mechanical characterization shows that individual springs operate at approximately 150-µN force. Electrical measurements and simulations imply that the interface contact resistance contribution to a single contact resistance is This paper suggests that integrated testing and packaging can be performed with the springs, enabling new capabilities for markets such as multichip modules.
Technical Library | 2021-12-29 19:52:50.0
Medtronic seeks to quantify the thermal aging limits of electroless Ni-electroless Pd-immersion Au (ENEPIG) surface finishes to determine how aggressive the silicon burn-in process can be without loss of solderability. Silicon burn-in (power testing at elevated temperature) is used to eliminate early field failures, critical for device reliability. Thermal aging due to burn-in or annealing causes Ni and Pd diffusion to and oxidation on the surface. Surface oxides limit wetting of the PbSn solder, affecting electrical connectivity of components soldered afterburn-in. Isothermal aging of two ENEPIG surface finishes was performed at 75°C-150°C for 100 hrs-1500hrs to test the thermal aging limits and identify how loss of solderability occurs.
Technical Library | 2014-07-02 16:46:09.0
Growth behaviors of intermetallic compounds (IMCs) and Kirkendall voids in Cu/Sn/Cu microbump were systematically investigated by an in-situ scanning electron microscope observation. Cu–Sn IMC total thickness increased linearly with the square root of the annealing time for 600 h at 150°C, which could be separated as first and second IMC growth steps. Our results showed that the growth behavior of the first void matched the growth behavior of second Cu6Sn5, and that the growth behavior of the second void matched that of the second Cu3Sn. It could be confirmed that double-layer Kirkendall voids growth kinetics were closely related to the Cu–Sn IMC growth mechanism in the Cu/Sn/Cu microbump, which could seriously deteriorate the mechanical and electrical reliabilities of the fine-pitch microbump systems
Technical Library | 2019-05-08 01:46:32.0
IPX9K Rain Spray Test Chamber(high Pressure high temperature water jet) simulates the use of pressure washer steam cleaning onto the enclosure, It is recognised as the harshest of all ingress protection tests. However the requirement is becoming more prevalent across many industries. Test method for IPX9K : Make sure the water temperature inside the water tank +80°C, water flow rate with 14L-16L per min, water pressure: 8000 Kpa -10000 Kpa (80–100 bar) at distance of 100mm~ 150mm, The test duration is 30 seconds in each of 4 angles, total spray testing time is 2 minutes. IPX9K rain test chamber applicable standards: IEC 60529 – Degrees of protection provided by enclosures (IP Code).Here is working principle in picture. Application: It is mainly suitable for testing the performance of shell and seal of electrical and electronic parts, automobile parts and seals under the condition of dripping rain to prevent Rain Water from permeating or working after drizzling.
1 |