Technical Library | 2021-12-29 19:52:50.0
Medtronic seeks to quantify the thermal aging limits of electroless Ni-electroless Pd-immersion Au (ENEPIG) surface finishes to determine how aggressive the silicon burn-in process can be without loss of solderability. Silicon burn-in (power testing at elevated temperature) is used to eliminate early field failures, critical for device reliability. Thermal aging due to burn-in or annealing causes Ni and Pd diffusion to and oxidation on the surface. Surface oxides limit wetting of the PbSn solder, affecting electrical connectivity of components soldered afterburn-in. Isothermal aging of two ENEPIG surface finishes was performed at 75°C-150°C for 100 hrs-1500hrs to test the thermal aging limits and identify how loss of solderability occurs.
Technical Library | 2011-09-22 16:30:11.0
The remainder of this paper will deal with the adhesive cure mechanism most often found in the microelectronics industry; the thermal activation and cure of adhesives that are most commonly based on epoxy backbones. The use of heat is already prevalent in the microelectronics industry as most printed circuit board assemblies use some element of this thermal energy (reflow ovens for example) during the component soldering and assembly stage or during their burn-in stage (convection ovens).
Technical Library | 2023-03-27 19:18:38.0
Electronic waste (e-waste) is currently the fastest growing hazardous waste stream that continues to be a challenging concern for the global environment and public health. The average useful life of electronic products has continued to decline, and obsolete products are being stored or discarded with increasing frequency. E-waste is hazardous, complex and expensive to treat in an environmentally sound manner. As a result, new challenges related to the management of e-waste have become apparent. Most electronic products contain a combination of hazardous materials, toxic materials, and valuable elements such as precious metals and rare earth elements. There are risks to human health associated with the disposal of E-waste in landfills, or treatment by incineration. Americans discard 400+ million electronic items per year recycling less than 20 percent in safe and sustainable manner. E-waste is exported from developed countries and processed informally using unsafe conditions in many regions of developing countries. A mixture of pollutants is released from these informal rudimentary operations. Exposure to e-waste recycling includes the dismantling of used electronics and the use of hydrometallurgical and pyrometallurgical processes, which emit toxic chemicals, to retrieve valuable components. Thermal analysis integrated with chromatographic and spectroscopic techniques are used to determine dangerous chemicals emitted during the burning of e-waste. The information is used to assess the risk of exposure of workers at these semi-formal recycling centers.
Technical Library | 2022-10-11 17:27:08.0
Lead-free flux technology for electronic industry is mainly driven by high soldering temperature, high alloy surface tension, miniaturization, air soldering due to low cost consideration, and environmental concern. Accordingly, the flux features desired included high thermal stability, high resistance against burn-off, high oxidation resistance, high oxygen barrier capability, low surface tension, high fluxing capacity, slow wetting, low moisture pickup, high hot viscosity, and halogen-free. For each of the features listed above, corresponding desired chemical structures can be deduced, and the impact of those structures on flux residue cleanability can be speculated. Overall, lead-free flux technology results in a greater difficulty in cleaning. Cleaner with a better matching solvency for the residue as well as a higher cleaning temperature or agitation are needed. Alkaline and polar cleaner are often needed to deal with the larger quantity of fluxing products. Reactive cleaner is also desired to address the side reaction products such as crosslinked residue.
Technical Library | 2019-05-06 23:04:05.0
The temperature and humidity test chamber simulate the temperature and humidity, so there are a lot of things customers shoud notice in the process of use, although there is detailed instruction when purchasing the equipment. But some users just know how the device works and start using it. This is very easy to cause problems in the use of the equipment, so Symor intends to describe the safety details during the use of temperature and humidity chamber. 1. Before the test, determine if the sample contains flammable and explosive substances to avoid combustion or explosion during the test. Of course, also make sure there is no flammable and explosive material around the test equipment, otherwise it may cause fire and other accidents. 2, Do not open the chamber door to operate during the experiment, or the gas in the studio may cause the operator to burn and so on. 3. At the end of the test or at the time of regular cleaning of the test chamber, power off the equipment to avoid electrocution accidents. Also, when cutting off the equipment power, pull the power cord to pull out the plug, otherwise it may lead to a rupture of the power cord and so on. You can contact manufacturers if there are some places you donnot understand, do not dismantle and repair the temperature and humidity test chamber without authorization, otherwise it may lead to more serious problems.
Technical Library | 2015-06-18 12:42:57.0
In the recent past, the Light Emitting Diode (LED) was hailed as the new energy efficient light source that would never have to be replaced. There were claims of 50,000+ hrs lifetime for the humble LED. That story has changed over the last few years as the number and diversity of the LED based products has increased. This is not to say that the original evidence was incorrect, but the initial enthusiastic estimates from the labs did not match the ultimate test, customers. As a result of poor quality products affecting the overall opinion of LED based products, it is critical that manufacturers can be confident in the quality of their product. In current times we want to have products certified, checked and ensure that we have the best quality. For the purposes of this paper we will look at one aspect of LED product, and this is the Lumen maintenance and estimated lifetime. The method described here does not seek to replace using high quality rating labs, but hopefully will allow the manufacturer to know with confidence that their prototype product, upon going to certification labs will be of a high enough quality that no expensive re-designs are required.
1 |