Technical Library: cad (Page 1 of 1)

A Unified CAD-PLM Architecture for Improving Electronics Design Productivity through Automation, Collaboration, and Cloud Computing

Technical Library | 2012-01-26 20:28:34.0

In electronics design, Computer Aided Design (CAD) tools manage part data in a logical schematic view (a part symbol) and a physical PCB view (a part footprint). Yet, a part has a third view, which CAD tools ignore – its supply data (Manufacturer part num

UCLA - Networked & Embedded Systems Laboratory

Integrated Offset Placement in Electronics Assembly Equipment - The Answer for Solder Paste Misalignment

Technical Library | 2008-10-29 18:45:53.0

Growing demand for compact, multi-function electronics products has accelerated component miniaturization and high-density placement, creating new challenges for the electronics manufacturing industry. It is no longer adequate to simply place parts accurately per a pre-defined CAD assembly program because solder paste alignment errors are increasing for numerous reasons. The solution to this problem is a system in which the placement machine can automatically detect and compensate for misalignment of the solder paste to produce high-quality boards regardless of the process errors beforehand.

Juki Automation Systems

Challenges of CAD Development for Datapath Design

Technical Library | 1999-05-06 14:19:44.0

In many high-performance VLSI designs, including all recent Intel microprocessors, datapath is implemented in a bit-sliced structure to simultaneously manipulate multiple bits of data. The circuit and layout of such structures are largely kept the same for each bit slice to achieve maximal performance, higher designer productivity, and better layout density. There are very few tools available to automate the design of a general datapath structure, most of which is done manually...

Intel Corporation

Rigid-Flex PCB Right the First Time - Without Paper Dolls

Technical Library | 2017-01-19 16:58:47.0

The biggest problem with designing rigid-flex hybrid PCBs is making sure everything will fold in the right way, while maintaining good flex-circuit stability and lifespan. The next big problem to solve is the conveyance of the design to a fabricator who will clearly understand the design intent and therefore produce exactly what the designer/engineer intended.Rigid-Flex circuit boards require additional cutting and lamination stages, and more exotic materials in manufacturing and therefore the cost of re-spins and failures are very much higher than traditional rigid boards. To reduce the risk and costs associated with rigid-flex design and prototyping, it is desirable to model the flexible parts of the circuit in 3D CAD to ensure correct form and fit. In addition it is necessary to provide absolutely clear documentation for manufacturing to the fabrication and assembly houses.

Altium

Physics of Failure (PoF) Based Lifetime Prediction of Power Electronics at the Printed Circuit Board Level

Technical Library | 2021-09-15 19:00:35.0

This paper presents the use of physics of failure (PoF) methodology to infer fast and accurate lifetime predictions for power electronics at the printed circuit board (PCB) level in early design stages. It is shown that the ability to accurately model silicon–metal layers, semiconductor packaging, printed circuit boards (PCBs), and assemblies allows, for instance, the prediction of solder fatigue failure due to thermal, mechanical, and manufacturing conditions. The technique allows a lifecycle prognosis of the PCB, taking into account the environmental stresses it will encounter during the period of operation. Primarily, it involves converting an electronic computer aided design (eCAD) circuit layout into computational fluid dynamic (CFD) and finite element analysis (FEA) models with accurate geometries. From this, stressors, such as thermal cycling, mechanical shock, natural frequency, and harmonic and random vibrations, are applied to understand PCB degradation, and semiconductor and capacitor wear, and accordingly provide a method for high-fidelity power PCB modelling, which can be subsequently used to facilitate virtual testing and digital twinning for aircraft systems and sub-systems.

Cranfield University

Embracing a New Paradigm: Electronic Work Instructions (EWI)

Technical Library | 2019-03-15 16:26:50.0

While there have been quite dramatic and evident improvements in almost every facet of manufacturing over the last several decades owing to the advent and mass adoption of computer automation and networking, there is one aspect of production that remains stubbornly unaffected. Massive databases track everything from orders, to inventory, to personnel. CAD systems allow for interactive and dynamic 3D rendering and testing, digital troubleshooting, and simulation and analysis prior to mass production. Yet, with all of this computational power and all of this networking capability, one element of production has remained thoroughly and firmly planted in the past. Nearly all manufacturing or assembly procedures are created, deployed, and stored using methodologies derived from a set of assumptions that ceased to be relevant fifty years ago. This set of assumptions, referred to below as the “Paper Paradigm” has been, and continues as the dominant paradigm for manufacturing procedures to this day. It is time for a new paradigm, one that accounts for the vastly different technological landscape of this era, one that provides a simple, efficient interface, deep traceability, and dynamic response to rapidly changing economic forces.This paper seeks to present an alternative. Instead of enhancing and improving on systems that became irrelevant with the invention of a database, instead of propping up an outdated, outmoded and inefficient system with incremental improvements; rewrite the paradigm. Change the underlying assertions to more accurately reflect our current technological capability. Instead of relying on evolutionary improvements, it is time for a revolution in manufacturing instructions.

ScanCAD International, Inc.

Fully automatic online shoe sole and upper spraying robot

Technical Library | 2019-05-23 21:56:56.0

Automatic on-line shoe sole spraying system: automatic shoe sole spraying system, simple and convenient operation, using 3D vision positioning system. Automatic recognition and automatic generation of spraying trajectory. Robot non-contact spraying gun is used to complete the process of shoe sole spraying with maturity, stability, high speed and high precision along the predetermined trajectory. The automatic generation of spraying trajectory is the realization of shoe sole spraying technology. Shoe sole spraying characteristics: 1.Positioning System: 3D Visual Positioning 2.Components: Intelligent Robot, Laser Scanner, Industrial Computer, Gum Spraying System, Conveyor Belt, Electrical Control System, etc. 3.Spraying time: slightly different according to shoe size and spraying time Fully automatic sole spraying advantages: 1. Simple application: suitable for soles of different specifications, models and sizes 2. Faster speed: 6-8 seconds to complete sole scanning and spraying, superior to similar products at home and abroad. 3. Quality stability: gum spraying trajectory is scheduled, gum dosage is fixed, gum spraying quality is greatly improved. 4. High cost performance: the same performance, the price is only 1/3 of the same type of equipment of European brand. 5. Reduce wear and tear: glue is fully utilized and not wasted, reducing human contact with glue. Intelligent operation advantage manual only need general operation can be automated workshop, mechanical arm automatic spraying glue, accurate spraying, reduce glue waste. Environmental protection effect of long-term close contact with glue seriously affects human health and mechanical work, glue does not directly contact, do not harm the human body. Fully automatic spraying, shoe sole adhesion process for automatic spraying machine, will not cause great challenges! With the deepening of personalized shoemaking, higher requirements have been put forward for the spraying technology in shoemaking process. The method of creating spraying trajectory must be adapted to shoes of different sizes and styles. The automatic generation of spraying trajectory is one of the key technologies to realize the automation of shoe sole spraying process. The method of off-line programming and real-time generation of spraying trajectory for robots based on the three-dimensional CAD model of sole and the data of sole. A new method of generating spray trajectory by scanning the sole of shoe upper with linear structured light sensor is presented. The feasibility of the method is verified by industrial robots. Aiming at the need of generating shoe sole spray rubber trajectory based on line structured light, the format standard of IGES file of three-dimensional model of shoe sole was tested. The shoe sole contour line and the shoe sole surface were extracted, and then the offset curve of the shoe sole contour line on the shoe sole surface was calculated to obtain the spray rubber trajectory. Three-dimensional profilometer is to use structured light to obtain sole information, effectively improve the automatic shoemaking spraying process, which will help to improve the efficiency of shoemaking, improve the quality of footwear products, and promote the development of personalized shoemaking.

YUSH Electronic Technology Co.,Ltd

  1  

cad searches for Companies, Equipment, Machines, Suppliers & Information