Technical Library: ceramics packages (Page 1 of 2)

Ceramic to Plastic Packaging

Technical Library | 2019-06-05 11:11:06.0

As electronic products increase in functionality and complexity, there is an emphasis on affordability, miniaturization, and energy efficiency. The telecommunications, automotive, and commercial electronic markets are the leading drivers for these trends. These markets see high volume manufacturing with millions of units priced to the fraction of the cent. The choice of the packaging material for the electrical components for these markets can have a substantial effect on the cost of the final product. Therefore plastic encapsulated components are almost universally used in non-military applications over the conventional ceramic or metal electronic packages.

ACI Technologies, Inc.

Decapsulation of Integrated Circuits

Technical Library | 2019-05-24 09:27:33.0

Decapsulation, or de-cap, is a failure analysis technique which involves the removal of material packaging from an integrated circuit (IC). After de-cap, visual inspection by optical microscopy of the internal circuitry may reveal areas where damage is most likely to have occurred. In addition, scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) can identify the composition of any anomalies present after de-cap under higher magnification. The removal process of package material can be done either mechanically or chemically depending on the design of the integrated circuit. With ceramic packaging, de-cap is usually done mechanically by chiseling off the top with a fine razor and small hammer. For plastic packaging, de-cap requires chemical etching by strong acids. In this Tech Tips article, de-cap by chemical etching will be outlined step by step.

ACI Technologies, Inc.

Decapsulation of Integrated Circuits

Technical Library | 2019-05-29 10:38:59.0

Decapsulation, or de-cap, is a failure analysis technique which involves the removal of material packaging from an integrated circuit (IC). After de-cap, visual inspection by optical microscopy of the internal circuitry may reveal areas where damage is most likely to have occurred. In addition, scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) can identify the composition of any anomalies present after de-cap under higher magnification. The removal process of package material can be done either mechanically or chemically depending on the design of the integrated circuit. With ceramic packaging, de-cap is usually done mechanically by chiseling off the top with a fine razor and small hammer. For plastic packaging, de-cap requires chemical etching by strong acids. In this Tech Tips article, de-cap by chemical etching will be outlined step by step.

ACI Technologies, Inc.

ALD of Alumina Ceramic Films for Hermetic Protection

Technical Library | 2020-08-05 17:13:12.0

A primary issue in electronics reliability for military applications is the ability to ensure long term operability in harsh, extreme environments. This requires more rigid standards, such as the MIL-STD-883 (Department of Defense Test Method Standard for Microcircuits), which commercial grade electronics typically do not satisfy. A solution commonly employed is to package the critical electronic components in hermetically sealed metal or ceramic enclosures which are costly and labor intensive. Not only are the components more expensive, but the assembly process is more difficult to automate, resulting in a substantial cost premium for military grade electronics.

ACI Technologies, Inc.

Organic Flip Chip Packages for Use in Military and Aerospace Applications

Technical Library | 2006-11-14 12:48:31.0

Content: 1. Bridge from Commercial Reliability 2. Existing PBGA use in Aerospace & Military 3. Drivers: Plastic versus Ceramic Package Weight 4. Attributes of PTFE and Thin Core FC Packages 5. Flip Chip Package Reliability 6. Flip Chip Package

i3 Electronics

Nondestructive Inspection of Underfill Layers Stacked up in Ceramics-Organics-Ceramics Packages with Scanning Acoustic Tomography (SAT)

Technical Library | 2017-06-15 00:44:19.0

Ceramics packages are being used in the electronics industry to operate the devices in harsh environments. In this paper we report a study on acoustic imaging technology for nondestructively inspecting underfill layers connecting organic interposers sandwiched between two ceramics substrates.First, we inspected the samples with transmission mode of scanning acoustic tomography (SAT) system, an inspection routine usually employed in assembly lines because of its simpler interpretation criteria: flawed region blocks the acoustic wave and appears darker. In this multilayer sample, this approach does not offer the crucial information at which layer of underfill has flaws. To resolve this issue, we use C-Mode Scanning in reflection mode to image layer by layer utilizing ultrasound frequencies from 15MHz to 120MHz. Although the sample is thick and contains at least 5 internal material interfaces, we are able to identify defective underfill layer interfaces.

Flex (Flextronics International)

Ceramic to Plastic Packaging

Technical Library | 2010-04-15 22:06:32.0

As electronic products increase in functionality and complexity, there is an emphasis on affordability, miniaturization, and energy efficiency. The telecommunications, automotive, and commercial electronic markets are the leading drivers for these trends. These markets see high volume manufacturing with millions of units priced to the fraction of the cent. The choice of the packaging material for the electrical components for these markets can have a substantial effect on the cost of the final product. Therefore plastic encapsulated components are almost universally used in non-military applications over the conventional ceramic or metal electronic packages.

Electronics Manufacturing Productivity Facility (EMPF)

Advanced Organic Substrate Technologies To Enable Extreme Electronics Miniaturization.

Technical Library | 2014-08-14 17:58:41.0

High reliability applications for high performance computing, military, medical and industrial applications are driving electronics packaging advancements toward increased functionality with decreasing degrees of size, weight and power (SWaP) The substrate technology selected for the electronics package is a key enabling technology towards achieving SWaP. Standard printed circuit boards (PWBs) utilize dielectric materials containing glass cloth, which can limit circuit density and performance, as well as inhibit the ability to achieve reliable assemblies with bare semiconductor die components. Ceramic substrates often used in lieu of PWBs for chip packaging have disadvantages of weight, marginal electrical performance and reliability as compared to organic technologies. Alternative materials including thin, particle-containing organic substrates, liquid crystal polymer (LCP) and microflex enable SWaP, while overcoming the limitations of PWBs and ceramic. This paper will discuss the use of these alternative organic substrate materials to achieve extreme electronics miniaturization with outstanding electrical performance and high reliability. The effect of substrate type on chip-package interaction and resulting reliability will be discussed. Microflex assemblies to achieve extreme miniaturization and atypical form factors driven by implantable and in vivo medical applications are also shown.

i3 Electronics

Design Parameters Influening Reliability of CCGA Assembly; a Sensitivity Analysis

Technical Library | 2019-07-30 15:29:50.0

Area Array microelectronic packages with small pitch and large I/O counts are now widely used in microelectronics packaging. The impact of various package design and materials/process parameters on reliability has been studied through extensive literature review. Reliability of Ceramic Column Grid Array (CCGA) package assemblies has been evaluated using JPL thermal cycle test results (-50°/75°C, -55°/100°C, and -55°/125°C), as well as those reported by other investigators. A sensitivity analysis has been performed using the literature data to study the impact of design parameters and global/local stress conditions on assembly reliability. The applicability of various life-prediction models for CCGA design has been investigated by comparing model's predictions with the experimental thermal cycling data. Finite Element Method (FEM) analysis has been conducted to assess the state of the stress/strain in CCGA assembly under different thermal cycling, and to explain the different failure modes and locations observed in JPL test assemblies.

Jet Propulsion Laboratory

High Temperature Ceramic Capacitors for Deep Well Applications

Technical Library | 2015-01-22 17:32:27.0

Temperature requirements for ceramic capacitors have increased significantly with recent advances in deep-well drilling technology. Increasing demand for oil and natural gas has driven the technology to deeper and deeper deposits resulting in extreme temperature environments up to 200°C and above. A novel capacitor solution utilizing temperature-stable base-metal electrode capacitors in a molded and leaded package addresses the growing market high temperature demands of (1) capacitance stability, (2) long service life, and (3) mechanical durability. A range of high temperature C0G capacitors capable of meeting this 200°C and above high temperature environment has been developed. This paper will review the electrical, reliability, and mechanical performance of this new capacitor solution

KEMET Electronics Corporation

  1 2 Next

ceramics packages searches for Companies, Equipment, Machines, Suppliers & Information

Sell Your Used SMT & Test Equipment

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Void Free Reflow Soldering

Software for SMT placement & AOI - Free Download.
Void Free Reflow Soldering

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Voidless Reflow Soldering

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...