Technical Library | 1999-05-09 12:36:40.0
The production of electronics began with hand soldering, followed by manual cleaning, which reached its peak during the NASA program. Each step in the process tended to be considered on a stand alone basis, without thought being given to the preceding and following steps. Since each step had its own set of specifications, this led to a "patchwork" approach to overall quality.
Technical Library | 2013-03-12 13:25:18.0
High density and miniaturized circuit assemblies challenge the solder paste printing process. The use of small components such as 0201, 01005 and μBGA devices require good paste release to prevent solder paste bridging and misalignment. When placing these miniaturized components, taller paste deposits are often required. To improve solder paste deposition, a nano-coating is applied to laser cut stencils to improve transfer efficiency. One concern is the compatibility of the nano-coating with cleaning agents used in understencil wipe and stencil cleaning. The purpose of this research is to test the chemical compatibility of common cleaning agents used in understencil wipe and stencil cleaning processes.Compatibility of Cleaning Agents With Nano-Coated Stencils
Technical Library | 2016-05-30 22:54:52.0
New engineered cleaning and defluxing agents promise great improvement in cleaning and reliability for electronic assemblies. As complexity grows and dimensions shrink in high reliability electronics, the need for materials compatibility and effectiveness in cleaning and rinsing is vital.
Technical Library | 2022-08-17 01:21:54.0
Back in the "good old days," stencil cleaning was effortless and effective. CFC-based solvents were sprayed or wiped onto a stencil with apertures hundreds of times larger than modern-day components. The stencil cleaning process was not considered a value-added procedure; instead it was the cleaning of a production tool. How times have changed. The late-1980s ushered in the end of most of the popular solvents, and the machines that consumed them. Assemblers turned to alternative cleaning agents, including IPAs and other solvents.
Technical Library | 2016-07-28 17:00:20.0
Packaging trends enable disruptive technologies. The miniaturization of components reduces the distance between conductive paths. Cleanliness of electronic hardware based on the service exposure of electrical equipment and controls can improve the reliability and cost effectiveness of the entire system. Problems resulting from leakage currents and electrochemical migration lead to unintended power disruption and intermittent performance problems due to corrosion issues.Solvent cleaning has a long history of use for cleaning electronic hardware. Limitations with solvent based cleaning agents due to environmental effects and the ability to clean new flux designs commonly used to join miniaturized components has limited the use of solvent cleaning processes for cleaning electronic hardware. To address these limitations, new solvent cleaning agents and processes have been designed to clean highly dense electronic hardware.The research study will evaluate the cleaning and electrical performance using the IPC B-52 Test Vehicle. Lead Free noclean solder paste will be used to join the components to the test vehicle. Ion Chromatography and SIR values will be reported.
Technical Library | 2019-08-14 22:20:55.0
Cleanliness is a product of design, including component density, standoff height and the cleaning equipment’s ability to deliver the cleaning agent to the source of residue. The presence of manufacturing process soil, such as flux residue, incompletely activated flux, incompletely cured solder masks, debris from handling and processing fixtures, and incomplete removal of cleaning fluids can hinder the functional lifetime of the product. Contaminates trapped under a component are more problematic to failure. Advanced test methods are needed to obtain "objective evidence" for removing flux residues under leadless components.Cleaning process performance is a function of cleaning capacity and defined cleanliness. Cleaning performance can be influenced by the PCB design, cleaning material, cleaning machine, reflow conditions and a wide range of process parameters.This research project is designed to study visual flux residues trapped under the bottom termination of leadless components. This paper will research a non-destructive visual method that can be used to study the cleanability of solder pastes, cleaning material effectiveness for the soil, cleaning machine effectiveness and process parameters needed to render a clean part.
Technical Library | 2012-11-15 23:38:50.0
First published in the 2012 IPC APEX EXPO technical conference proceedings. As we progress in the 21st century, electronics manufacturing will need more and more precision. Parts will get more complex since more components have to be assembled in smaller spaces. Circuit boards and other electronic assemblies will become more densely populated; spacings between components will be shorter. This will require precision manufacturing and efficient cleaning during and post manufacturing. In addition, with population and technology progressing, larger amount of greenhouse gases will be emitted resulting in higher global warming. Intense research effort is going on to develop new generation of chemicals to address both cleaning and global warming issues. Low global warming solutions in refrigeration and as insulating agents are already in the marketplace.
1 |