Technical Library: cleaning no-clean flux (Page 2 of 5)

The Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations the Risk And Solution For No-Clean Flux Not Fully Dried Under Component Terminations

Technical Library | 2020-11-24 23:01:04.0

The miniaturization trend is driving industry to adopting low standoff components or components in cavity. The cost reduction pressure is pushing telecommunication industry to combine assembly of components and electromagnetic shield in one single reflow process. As a result, the flux outgassing/drying is getting very difficult for devices due to poor venting channel. This resulted in insufficiently dried/burnt-off flux residue. For a properly formulated flux, the remaining flux activity posed no issue in a dried flux residue for no-clean process. However, when venting channel is blocked, not only solvents remain, but also activators could not be burnt off. The presence of solvents allows mobility of active ingredients and the associated corrosion, thus poses a major threat to the reliability. In this work, a new halogen-free no-clean SnAgCu solder paste, 33-76-1, has been developed. This solder paste exhibited SIR value above the IPC spec 100 MΩ without any dendrite formation, even with a wet flux residue on the comb pattern. The wet flux residue was caused by covering the comb pattern with 10 mm × 10 mm glass slide during reflow and SIR testing in order to mimic the poorly vented low standoff components. The paste 33-76-1 also showed very good SMT assembly performance, including voiding of QFN and HIP resistance. The wetting ability of paste 33-76-1 was very good under nitrogen. For air reflow, 33-76-1 still matched paste C which is widely accepted by industry for air reflow process. The above good performance on both non-corrosivity with wet flux residue and robust SMT process can only be accomplished through a breakthrough in flux technology.

Indium Corporation

Understanding the Effect of Different Heating Cycles on Post-Soldering Flux Residues and the Impact on Electrical Performance

Technical Library | 2018-11-20 21:33:57.0

There are several industry-accepted methods for determining the reliability of flux residues after assembly. The recommended methods of test sample preparation do not always closely mimic the thermal cycle experienced by an assembly. Therefore, extraction from actual assemblies has become a popular method of process control to assess consistency of post-reflow cleanliness. Every method of post-reflow flux residue characterization will depend on the reflow process followed to prepare the coupon.This investigation will focus on the effect of thermal conditions on the remainder of active ingredients in flux residues after assembly with no-clean solder pastes.

Indium Corporation

Conductive Adhesives: TheWay Forward

Technical Library | 2010-11-04 19:56:25.0

Conductive Adhesives represent an intrinsically clean, simple and logical solution for a myriad of electrical interconnect challenges. Adhesives not only provide a "lead-free", "no clean" alternative to solder, these highly compatible materials offer viab

Cookson Electronics

Reactivity Of No-Clean Flux Residues Trapped Under Bottom Terminated Components

Technical Library | 2017-07-20 15:18:15.0

As electronic devices increase functionality in smaller form factors, there will be limitations, obstacles and challenges to overcome. Advances in component technology can create issues that may have time delayed effects. One such effect is device failure due to soldering residues trapped under bottom terminated components. If the residues trapped under the component termination are active and can be mobilized with moisture, there is the potential for ion mobilization causing current leakage.

Kester

Combination of Spray and Soak Improves Cleaning under Bottom Terminations

Technical Library | 2014-10-23 18:10:10.0

The functional reliability of electronic circuits determines the overall reliability of the product in which the final products are used. Market forces including more functionality in smaller components, no-clean lead-free solder technologies, competitive forces and automated assembly create process challenges. Cleanliness under the bottom terminations must be maintained in harsh environments. Residues under components can attract moisture and lead to leakage currents and the potential for electrochemical migration (...) The purpose of this research study is to evaluate innovative spray and soak methods for removing low residue flux residues and thoroughly rinsing under Bottom Termination and Leadless Components

KYZEN Corporation

An Alternative Solvent with Low Global Warming Potential

Technical Library | 2015-02-05 20:25:41.0

In the past 20 yrs the solvent industry has gone through a great deal of change. In the early 1990s, CFC-113 and 1,1,1-trichloroethane were the workhorses of the industry. The Montreal Protocol to phase-out substances that deplete the Earth's protective Ozone Layer was implemented in the mid 1990s. After phase-out of the CFC solvents, the solvent industry fragmented to a variety of cleaning solutions. The electronics industry was a large user of CFC solvents and many of these applications changed to aqueous based cleaners (...) But those alternatives are now facing various problems: e.g. aqueous based cleaners use a lot of energy, require long drying times, use equipment that requires frequent maintenance, and require a large footprint; no-clean fluxes leave flux residues; and trichloroethylene and n-propyl bromide have toxicity issues. In response to these serious issues newer solvents and blends are being introduced in the marketplace

Honeywell International

Partially-Activated Flux Residue Impacts on Electronic Assembly Reliabilities

Technical Library | 2016-12-29 15:37:51.0

The reliabilities of the flux residue of electronic assemblies and semiconductor packages are attracting more and more attention with the adoption of no-clean fluxes by majority of the industry. In recent years, the concern of "partially activated" flux residue and their influence on reliability have been significantly raised due to the miniaturization along with high density design trend, selective soldering process adoption, and the expanded use of pallets in wave soldering process. When flux residue becomes trapped under low stand-off devices, pallets or unsoldered areas (e.g. selective process), it may contain unevaporated solvent, "live" activators and metal complex intermediates with different chemical composition and concentration levels depending on the thermal profiles. These partially-activated residues can directly impact the corrosion, surface insulation and electrochemical migration of the final assembly. In this study, a few application tests were developed internally to understand this issue. Two traditional liquid flux and two newly developed fluxes were selected to build up the basic models. The preliminary results also provide a scientific approach to design highly reliable products with the goal to minimize the reliability risk for the complex PCB designs and assembly processes. This paper was originally published by SMTA in the Proceedings of SMTA International

Kester

SMT Process Recommendations Defect Minimization Methods for a No-Clean SMT Process

Technical Library | 1999-05-07 11:35:19.0

Key competitive advantages can be obtained through the minimization of process defects and disruptions. In today's electronic manufacturing processes there are many variables to optimize. By gaining an understanding of what the defects are, and where they come from, is a key step in the process towards defect free/six sigma manufacturing. In the last decade, Surface Mount Technology processes have been slowly converting towards the No-Clean philosophy. This new trend has spawned new processing issues which need to be addressed. This paper will investigate solutions to current problems in the processing of No-Clean SMT processes.

Kester

CHANGING THE RULES OF STENCIL DESIGN

Technical Library | 2023-05-22 16:42:56.0

Nano-coatings are applied to solder paste stencils with the intent of improving the solder paste printing process. Do they really make a noticeable improvement? The effect of Nano-coatings on solder paste print performance was investigated. Transfer efficiencies were studied across aperture sizes ranging from 0.30 to 0.80 area ratio. Also investigated were the effects of Nano-coatings on transfer efficiencies of tin-lead, lead-free, water soluble, no-clean, and type 3, 4, and 5 solder pastes. Solder paste print performance for each Nano-coating was summarized with respect to all of these variables.

FCT ASSEMBLY, INC.

Water Soluble Solder Paste, Wet Behind the Ears or Wave of the Future

Technical Library | 2017-03-22 20:58:08.0

Water soluble lead-free solder paste is widely used in today’s SMT processes, but the industry is slowly moving away from water soluble solder pastes in favor of no-clean solder pastes. This shift in usage of solder paste is driven by an effort to eliminate the water wash process. Some components cannot tolerate water wash and elimination of water washing streamlines the SMT process. Despite this shift, certain applications lend themselves to the use of water soluble solder paste.This paper details the research and development of a new water soluble lead-free solder paste which improves on the performance characteristics of existing technologies.

FCT ASSEMBLY, INC.


cleaning no-clean flux searches for Companies, Equipment, Machines, Suppliers & Information

PCB Handling Machine with CE

High Resolution Fast Speed Industrial Cameras.
Electronics Equipment Consignment

High Throughput Reflow Oven
SMT feeders

World's Best Reflow Oven Customizable for Unique Applications
Global manufacturing solutions provider

Training online, at your facility, or at one of our worldwide training centers"
Assembly Automation Technology

"回流焊炉"