Technical Library: cm2 (Page 1 of 1)

Optimizing Reflowed Solder TIM (sTIMs) Processes for Emerging Heterogeneous Integrated Packages

Technical Library | 2023-01-17 17:12:33.0

Reflowed indium metal has for decades been the standard for solder thermal interface materials (solder TIMs or sTIMs) in most high-performance computing (HPC) TIM1 applications. The IEEE Heterogeneous Integration Thermal roadmap states that new thermal interface materials solutions must provide a path to the successful application of increased total-package die areas up to 100cm2. While GPU architectures are relatively isothermal during usage, CPU hotspots in complex heterogeneously-integrated modules will need to be able to handle heat flux hotspots up to 1000W/cm2 within the next two years. Indium and its alloys are used as reflowed solder thermal interface materials in both CPU and GPU "die to lid/heat spreader" (TIM1) applications. Their high bulk thermal conductivity and proven long-term reliability suit them well for extreme thermomechanical stresses. Voiding is the most important failure mode and has been studied by x-ray. The effects of surface pretreatment, pressure during reflow, solder flux type/fluxless processing, and preform design parameters, such as alloy type, are also examined. The paper includes data on both vacuum and pressure (autoclave) reflow of sTIMs, which is becoming necessary to meet upcoming requirements for ultralow voiding in some instances.

Heller Industries Inc.

Effect of Silicone Contamination on Assembly Processes

Technical Library | 2013-02-07 17:01:46.0

Silicone contamination is known to have a negative impact on assembly processes such as soldering, adhesive bonding, coating, and wire bonding. In particular, silicone is known to cause de-wetting of materials from surfaces and can result in adhesive failures. There are many sources for silicone contamination with common sources being mold releases or lubricants on manufacturing tools, offgassing during cure of silicone paste adhesives, and residue from pressure sensitive tape. This effort addresses silicone contamination by quantifying adhesive effects under known silicone contaminations. The first step in this effort identified an FT-IR spectroscopic detection limit for surface silicone utilizing the area under the 1263 cm-1 (Si-CH3) absorbance peak as a function of concentration (µg/cm2). The next step was to pre-contaminate surfaces with known concentrations of silicone oil and assess the effects on surface wetting and adhesion. This information will be used to establish guidelines for silicone contamination in different manufacturing areas within Harris Corporation... First published in the 2012 IPC APEX EXPO technical conference proceedings.

Harris Corporation

  1  

cm2 searches for Companies, Equipment, Machines, Suppliers & Information

consignment program

High Throughput Reflow Oven


High Precision Fluid Dispensers
Thermal Interface Material Dispensing

World's Best Reflow Oven Customizable for Unique Applications
Fully Automatic BGA Rework Station

Reflow Soldering Oven & Pressure Curing Oven Manufacturer in India