Technical Library: coating cleaning (Page 1 of 1)

Mastering Precision: I.C.T's SMT Conformal Coating Valves

Technical Library | 2023-12-06 03:28:49.0

Mastering Precision: I.C.T's SMT Conformal Coating Valves Introduction Of SMT Conformal Coating Valves: In various industries, including electronics, lighting, energy, and life sciences, the SMT conformal coating process plays a critical role. Precision is key, and the choice of a SMT coating valve significantly influences application quality. This article explores I.C.T's SMT conformal coating valves, focusing on the C-0101, C-L101, PJ-01, PJ-01 (with plastic bucket), C-0100, D-0100, D-0300, and the W Series. C-0101 Water Curtain Spray SMT Conformal Coating Valves: The C-0101, a non-atomizing water curtain spray valve, excels with low-viscosity solvent materials. It ensures clean and precise edges in applications like conformal coatings, UV adhesives, backfilling, and volatile substances. C-L101 Rotary Water Curtain Spray Valve: Similar to the C-0101, the C-L101 suits low-viscosity solvent materials, offering a precise edge without splashing for various coatings. PJ-01 Injection Valve (Without Plastic Bucket): Designed for high-precision applications in electronics, lighting, energy, and life sciences, the PJ-01 excels in accurate dispensing and coating. It accommodates various materials, including red glue, liquids, and pastes. PJ-01 Injection Valve (With Plastic Bucket 30CC): The PJ-01, with a 30cc plastic bucket, maintains high precision for complex circuit board applications, offering precise dispensing for materials like red glue, liquids, and pastes. C-0100 Non-Rotating Film Valve: Different from pneumatic atomizing valves, the C-0100 provides precise edge definition without air pressure involvement. It addresses issues related to atomizing drift and fast-drying adhesives, allowing control over the film width. D-0100 Precision Valve: The D-0100, with a unique fluid-sealing structure driven by compressed air, minimizes seal replacement frequency. Suitable for various fluid dispensing, it handles UV adhesives, encapsulating materials, silicones, epoxies, and surface coatings. D-0300 Dispensing Valve: Tailored for precision fluid dispensing at low driving pressure, the D-0300 accommodates a range of materials, including acrylics, silicones, epoxies, and UV adhesives. It's ideal for applications where accuracy and consistency are crucial. W Series: Needle Design Atomization Valves: The W Series offers needle design valves leaving zero residue. Easy to clean without disassembly, they provide adjustable fluid and air pressure for various coating materials, ensuring excellent atomization effects. Analyzing The Options: When selecting a conformal coating valve, consider specific application requirements. C-0101 and C-L101 suit low-viscosity solvent materials, providing clean and precise edges. PJ-01, with or without a plastic bucket, offers high-precision dispensing for complex applications. C-0100 and D-0100 are versatile for various materials, and D-0300 excels in precision dispensing. The W Series offers residue-free needle design atomization valves. Choose based on material, precision, and coating needs. Integration with I.C.T's Conformal Coating Machines: Integral to I.C.T's Conformal Coating machines, these valves enable precise application tailored to specific requirements. Machines like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650 come equipped with a range of valve options catering to diverse production line needs. I.C.T SMT Coating Machine.png Conclusion: Selecting the right conformal coating valve is crucial for consistent, high-quality results. Evaluate options based on material, precision, and coating requirements. I.C.T provides tailored solutions for electronic assembly needs. For detailed insights into coating and dispensing machines, follow the provided link. Professional engineers are ready to assist in designing a production line that perfectly matches your requirements, ensuring optimal performance. Contact us for more information and tailored solutions to elevate your conformal coating processes.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Compatibility of Cleaning Agents With Nano-Coated Stencils

Technical Library | 2013-03-12 13:25:18.0

High density and miniaturized circuit assemblies challenge the solder paste printing process. The use of small components such as 0201, 01005 and μBGA devices require good paste release to prevent solder paste bridging and misalignment. When placing these miniaturized components, taller paste deposits are often required. To improve solder paste deposition, a nano-coating is applied to laser cut stencils to improve transfer efficiency. One concern is the compatibility of the nano-coating with cleaning agents used in understencil wipe and stencil cleaning. The purpose of this research is to test the chemical compatibility of common cleaning agents used in understencil wipe and stencil cleaning processes.Compatibility of Cleaning Agents With Nano-Coated Stencils

KYZEN Corporation

Conformal Coating over No Clean Flux Residues

Technical Library | 2015-03-04 10:56:26.0

As the proliferation of modern day electronics continues to drive miniaturization and functionality, electronic designers/assemblers face the issue of environmental exposure and uncommon applications never previously contemplated. This reality, coupled with the goal of reducing the environmental and health implications of the production and disposal of these devices, has forced manufacturers to reconsider the materials used in production. Furthermore, the need to increase package density and reduce costs has led to the rapid deployment of leadless packages such as QFN, POP, LGA, and Micro-BGA. In many cases, the manufacturers of these devices will recommend the use of no clean fluxes due to concerns over the ability to consistently remove flux residues from under and around these devices. These concerns, along with the need to implement a tin whisker mitigation strategy and/or increase environmental tolerance, have led to the conundrum of applying conformal coating over no clean residues.

AIM Solder

Can Nano-Coatings Really Improve Stencil Performance?

Technical Library | 2017-10-26 01:18:49.0

Nano-coatings have been introduced by various manufacturers, with the promise of addressing some of the challenges relative to solder paste printing. Stated benefits include: Reduced underside cleaning, reduced bridging, improved solder paste release and improvements in yield. With several nano technologies already on the market and more likely to be introduced, how can the performance be quantified? How robust are these coatings? How can an assembler approach the ROI of these coatings? What hidden benefits or negative impacts should be considered? This paper will present a rigorous method for evaluating the performance and economic benefits of solder paste stencil nano-coatings.

FCT ASSEMBLY, INC.

CHANGING THE RULES OF STENCIL DESIGN

Technical Library | 2023-05-22 16:42:56.0

Nano-coatings are applied to solder paste stencils with the intent of improving the solder paste printing process. Do they really make a noticeable improvement? The effect of Nano-coatings on solder paste print performance was investigated. Transfer efficiencies were studied across aperture sizes ranging from 0.30 to 0.80 area ratio. Also investigated were the effects of Nano-coatings on transfer efficiencies of tin-lead, lead-free, water soluble, no-clean, and type 3, 4, and 5 solder pastes. Solder paste print performance for each Nano-coating was summarized with respect to all of these variables.

FCT ASSEMBLY, INC.

NanoClear Coated Stencils

Technical Library | 2023-05-22 16:49:42.0

Our customers' issues • Apertures are getting smaller • Paste does not release as well • Contaminates the bottom of the stencil • Increases defects / reduces yield  Insufficient solder  Bridging  Solder balls on surface of PCB  Flux residue • Requires more frequent cleaning • Reduced efficiency (wasted time) • Increased use of consumables (cost)  USC fabric (use "cheap" fabric to reduce cost)  Lint creates more defects  Cleaning chemistries (use IPA to reduce cost)  IPA breaks down flux and can create more defects

ASM Assembly Systems (DEK)

Stencil Printing Process Tools for Miniaturisation and High Yield Processing

Technical Library | 2023-06-12 19:00:21.0

The SMT print process is now very mature and well understood. However as consumers continually push for new electronic products, with increased functionality and smaller form factor, the boundaries of the whole assembly process are continually being challenged. Miniaturisation raises a number of issues for the stencil printing process. How small can we print? What are the tightest pitches? Can we print small deposits next too large for high mix technology assemblies? How closely can we place components for high density products? ...And then on top of this, how can we satisfy some of the cost pressures through the whole supply chain and improve yield in the production process! Today we are operating close to the limits of the stencil printing process. The area ratio rule (the relationship between stencil aperture opening and aperture surface area) fundamentally dictates what can and cannot be achieved in a print process. For next generation components and assembly processes these established rules need to be broken! New stencil printing techniques are becoming available which address some of these challenges. Active squeegees have been shown to push area ratio limits to new boundaries, permitting printing for next generation 0.3CSP technology. Results also indicate there are potential yield benefits for today's leading edge components as well. Stencil coatings are also showing promise. In tests performed to date it is becoming apparent that certain coatings can provide higher yield processing by extending the number of prints that can be performed in-between stencil cleans during a print process. Preliminary test results relating to the stencil coating technology and how they impact miniaturisation and high yield processing will be presented.

ASM Assembly Systems (DEK)

Contamination Profile of Printed Circuit Board Assemblies in Relation to Soldering Types and Conformal Coating

Technical Library | 2017-12-11 22:31:06.0

Typical printed circuit board assemblies (PCBAs) processed by reflow, wave, or selective wave soldering were analysed for typical levels of process related residues, resulting from a specific or combination of soldering process. Typical solder flux residue distribution pattern, composition, and concentration are profiled and reported. Presence of localized flux residues were visualized using a commercial Residue RAT gel test and chemical structure was identified by FT-IR, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode setup. Localized extraction of residue was carried out using a commercial C3 extraction system. Results clearly show that the amount and distribution of flux residues are a function of the soldering process, and the level can be reduced by an appropriate cleaning. Selective soldering process generates significantly higher levels of residues compared to the wave and reflow process. For conformal coated PCBAs, the contamination levels generated from the tested wave and selective soldering process are found to be enough to generate blisters under exposure to high humidity levels.

Technical University of Denmark

  1  

coating cleaning searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
SMT Machines

High Throughput Reflow Oven
convection smt reflow ovens

Training online, at your facility, or at one of our worldwide training centers"
2024 Eptac IPC Certification Training Schedule

World's Best Reflow Oven Customizable for Unique Applications
Fully Automatic BGA Rework Station

Low-cost, self-paced, online training on electronics manufacturing fundamentals