Technical Library: coating services (Page 1 of 1)

Measuring Conformal Coating Thickness

Technical Library | 2015-07-21 13:50:37.0

Achieving an even coat at the right desired thickness is a major challenge when it comes to applying conformal coating to a Printed Circuit Board (PCB). Applying a coating too thin will ultimately render the electronic assembly vulnerable to potential environmental risks therefore defeating the purpose of the coating. Apply the coat too thick, and it could leave the electronic specific components non-functional therefore destroying the electronic assembly entirely. Coating thickness must meet quality specifications. Measurements for coating thickness may be taken while film is dry or wet. Once measurements are recorded, thickness is compared to quality specifications and fluid dispensing automation machinery is calibrated as necessary. There are a handful of methods for measuring conformal coating thickness that are commonly used in the Electronic Manufacturing Services (EMS) and Original Electronic Manufacturer (OEM) industries. A few commonly used methods for checking conformal coating thickness include:

ETS - Energy Technology Systems, Inc.

Guide to Light-Cure Conformal Coating

Technical Library | 2017-11-30 10:29:29.0

Each year the electronics industry is faced with new product designs that call for smaller printed circuit boards (PCBs) to function in more aggressive and rigorous service environments. As demands change, conformal coating is becoming increasingly adopted to ensure PCB reliability in environments where moisture, condensation, dust, dirt, salts, chemicals, abrasion, thermal shock, mechanical shock, and other factors can all affect circuit performance. This guide reviews the benefits of using light-cure conformal coatings as well as cost justification, typical processing guidelines and best practices, product selection criteria, data, and industry specifications.

Dymax Corporation

Conformal Coating - Sealing PCBs

Technical Library | 2019-05-01 15:19:19.0

"Sealing" in dispensing and potting technology describes a process in which sensitive electronics surfaces are coated with a very thin layer of casting resin or protective varnish. It serves to protect against environmental influences and corrosion, resulting in a longer service life and operational reliability of the components. To ensure that the material is distributed homogeneously across the surface, this well-known "conformal coating" process is employed using low-viscosity casting resins.

Scheugenpflug Inc.

Evaluation of Stencil Foil Materials, Suppliers and Coatings

Technical Library | 2011-12-08 17:46:42.0

The past few years have brought PCB assemblers a multitude of choices for SMT stencil materials and coatings. In addition to the traditional laser-cut stainless steel (SS) or electroformed nickel, choices now include SS that has been optimized for laser c

Shea Engineering Services

Creep Corrosion of PWB Final Finishes: Its Cause and Prevention

Technical Library | 2021-04-08 00:30:49.0

As the electronic industry moves to lead-free assembly and finer-pitch circuits, widely used printed wiring board (PWB) finish, SnPb HASL, has been replaced with lead-free and coplanar PWB finishes such as OSP, ImAg, ENIG, and ImSn. While SnPb HASL offers excellent corrosion protection of the underlying copper due to its thick coating and inherent corrosion resistance, the lead-free board finishes provide reduced corrosion protection to the underlying copper due to their very thin coating. For ImAg, the coating material itself can also corrode in more aggressive environments. This is an issue for products deployed in environments with high levels of sulfur containing pollutants encountered in the current global market. In those corrosive environments, creep corrosion has been observed and led to product failures in very short service life (1-5 years). Creep corrosion failures within one year of product deployment have also been reported. This has prompted an industry-wide effort to understand creep corrosion

Alcatel-Lucent

Fine Tuning The Stencil Manufacturing Process and Other Stencil Printing Experiments

Technical Library | 2013-11-21 12:01:11.0

Previous experimentation on a highly miniaturized and densely populated SMT assembly revealed the optimum stencil alloy and flux-repellent coating for its stencil printing process. Production implementation of the materials that were identified in the study resulted in approximately 5% print yield improvement across all assemblies throughout the operation, validating the results of the initial tests. A new set of studies was launched to focus on the materials themselves, with the purpose of optimizing their performance on the assembly line (...) Results of the prior tests are reviewed, and the new test vehicle, experimental setup and results are presented and discussed.

Shea Engineering Services

  1  

coating services searches for Companies, Equipment, Machines, Suppliers & Information



Training online, at your facility, or at one of our worldwide training centers"
Win Source Online Electronic parts

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Circuit Board, PCB Assembly & electronics manufacturing service provider

We offer SMT Nozzles, feeders and spare parts globally. Find out more
Win Source Online Electronic parts

Reflow Soldering 101 Training Course
PCB separator

"Heller Korea"