Technical Library | 2023-09-16 06:27:24.0
Vacuum reflow ovens are the best way to solder SMD components. They create a controlled environment that prevents oxidation and improves solder joint quality.
Technical Library | 2023-09-16 06:29:26.0
Explore our range of reflow ovens designed to streamline your PCB assembly process. Achieve consistent and high-quality soldering for your electronic components.
Technical Library | 2023-11-07 09:36:38.0
How to Choose the Right PCB Coating Machine Line Selecting the ideal equipment for your PCB coating line can be a complex task. In this article, we will guide you through the critical components of a standard PCB coating machine line and their solutions to common challenges. We'll delve into the line's composition, including the elevator, transfer station, coating machine, inspection station, curing oven, and their interconnectedness through a return conveyor. Let's explore each element and understand its role. Components of a PCB Coating Machine Line: Elevator: The PCB coating process starts with an elevator, efficiently transporting PCB boards to the next stage. Transfer Station: After the elevator, boards are conveyed to a transfer station, preparing them for the coating process. Coating Machine: The heart of the PCB coating line is the coating machine. We offer a range of coating machines, including I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. Inspection Conveyor: Following the coating process, the boards move to an inspection station. The second transfer station is equipped with LED lights and a blue glass cover, enabling operators to closely inspect the coating quality. This feature is vital for ensuring consistent, dust-free coatings. Curing Oven: For UV-curable adhesives, we provide a UV curing oven to effectively solidify the adhesive. Return Conveyor: Beneath the entire line runs a return conveyor, connected to the elevator. This conveyor system efficiently returns PCBs from the last elevator to the first one, reducing manual handling and streamlining operations. The Advantages of the PCB Coating Line Design: 1. Easy Accessibility: The operator's station is strategically located beside the coating machine, ensuring easy access for setup and adjustments. 2. Enhanced Efficiency: The integrated return conveyor eliminates the need for manual transport, optimizing workflow. 3. Quality Control: The inspection station with the blue glass cover enables operators to inspect coatings for quality and cleanliness. 4. Dust Prevention: The blue glass cover also serves as a barrier to prevent dust contamination on freshly coated PCBs. Selecting the right PCB coating machine line is essential for achieving quality and efficiency in your operations. Our meticulously designed equipment line, along with its well-engineered components, can help you attain superior results. If you have further questions or need assistance in choosing the best solution for your specific requirements, please do not hesitate to contact us. We are committed to providing solutions that meet your needs and exceed your expectations.
Technical Library | 2023-11-09 08:53:45.0
Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!
Technical Library | 2024-02-02 07:48:31.0
Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.
Technical Library | 2019-11-13 02:09:44.0
Dry oven is a must instrument almost for every laboratory in different industries,with nearly 20 years efforts and innovation,Climatest now masters core technique of dry oven manufacturing,no matter on temperature uniformity or temperature stability.Behind the quality is 15 years of consistent persistence,strong belief in excellence; from design to R & D to production, from promotion to sales to installation; every step should reach excellence,What you see, you use our products, you choose, you feel that we do our best,this is our faith. Dry Ovens are used to dry or temper electronic components,material tests,torrefaction, wax-melting ,high temperature aging ,preheating and sterilization in industrial and mining enterprises, laboratories and scientific research institutes. .Exterior chamber is made by reinforced steel with painting; working chamber made by anti-corrosion stainless steel SUS#304 .Intelligent PID control, LED controller with over-temperature alarm,timing range within 0~9999min .Hot air circulation system composed of Germany imported low-noisy air blower and optimal air duct which ensure uniform temperature distribution .Double layers of glass door, large transparent window to observe specimen .Forced air convection Climatest manufactures desktop and floor-standing models with RT+10°C-200°C,250°C,300°C,350°C,400°C temperature range,and customized as per special requirement,if you wanna know more details about our dry oven,please visit our product page:https://climatechambers.com/industrial-dry-oven/200-degree-c-hot-air-oven.html
Technical Library | 2022-09-12 14:07:47.0
Unique component handling issues can arise when an assembly factory uses highly-moisture sensitive surface mount devices (SMDs). This work describes how the distribution of moisture within the molded plastic body of a SMD is an important variable for survivability. JEDEC/IPC [1] moisture level rated packages classified as Levels 4-5a are shown to require additional handling constraints beyond the typical out-of-bag exposure time tracking. Nitrogen or desiccated cabinet containment is shown as a safe and effective means for long-term storage provided the effects of prior out-of-bag exposure conditions are taken into account. Moisture diffusion analyses coupled with experimental verification studies show that time in storage is as important a variable as floor-life exposure for highly-moisture sensitive devices. Improvements in floor-life survivability can be obtained by a handling procedure that includes cyclic storage in low humidity containment. SMDs that have exceeded their floor-life limits are analyzed for proper baking schedules. Optimized baking schedules can be adopted depending on a knowledge of the exposure conditions and the moisture sensitivity level of the device.
Technical Library | 2011-09-22 16:30:11.0
The remainder of this paper will deal with the adhesive cure mechanism most often found in the microelectronics industry; the thermal activation and cure of adhesives that are most commonly based on epoxy backbones. The use of heat is already prevalent in the microelectronics industry as most printed circuit board assemblies use some element of this thermal energy (reflow ovens for example) during the component soldering and assembly stage or during their burn-in stage (convection ovens).
Technical Library | 2021-11-26 14:34:07.0
The use of desiccant bags filled with Silica Sand and or Clay beads used in conjunction with a Moisture Barrier Bag to control moisture for storage of printed circuit boards has long been an accepted practice and standard from both JEDEC and IPC organizations. Additionally, the use heated ovens for baking off moisture using the evaporation process has also been a long#2;standing practice from these organizations. This paper on alternative drying methods will be accompanied by completed independent, unbiased tests conducted by Vinny Nguyen, an engineering student (now graduated) from San Jose State University. The accompanied paper will examine the performance levels of different technologies of desiccant bags to control moisture in enclosed spaces. The tests and equipment set were reviewed by an engineer and consultant to the Lockheed Martin Aerospace Division and the IPC - TM-650 2.6.28 test method was review by engineer from pSemi. The tests were designed to mimic performance tests outlined in Mil Spec 3464, which both IPC and JEDEC have adopted for their respective standards. The test examined variables including absorption capacity rates, weight gain and release of moisture back into the enclosed area. The presentation will also address and highlight: • Similarities of PCBs and Heavy Equipment as it applies to Inspections, Causes of Failure, Types of Corrosion and Moisture Collection Points. • Performance Attributes of Different Desiccant Technologies as it applies to shape, texture, change outs, labeling and regeneration. • Venn Diagram of Electromechanical Failure with the circles 1. Current 2. Contamination 3. Humidity Presentation Available
Technical Library | 2016-02-11 18:26:43.0
Although reflow ovens may not have been dramatically changed during the last decade the reflow process changes step by step. With the introduction of lead-free soldering not only operation temperatures increased, but also the chemistry of the solder paste was modified to meet the higher thermal requirements. Miniaturization is a second factor that impacts the reflow process. The density on the assembly is increasing where solder paste deposit volumes decreases due to smaller pad and component dimensions. Pick and place machines can handle more components and to meet this high through put some SMD lines are equipped with dual lane conveyors, doubling solder paste consumption. With the introduction of pin in paste to solder through hole components contamination of the oven increased due to dripping of the paste.