Technical Library: component (Page 16 of 40)

Pin in Paste Stencil Design for Notebook Mainboard

Technical Library | 2008-03-18 12:36:31.0

This paper examines the construction of a notebook mainboard with more than 2000 components and no wave soldering required. The board contains standard SMD, chipset BGAs, connectors, through hole components and odd forms placed using full automation and soldered after two reflow cycles under critical process parameters. However, state of the art technology does not help if the process parameters are not set carefully. Can all complex BGAs, THTs and even screws be soldered on a single stencil? What will help us overcome bridging, insufficient solder and thombstoning issues? This paper will demonstrate the placement of all odd shape components using pin-in-paste stencil design and full completion of the motherboard after two reflow cycles.

Vestel Electronic

Broadband Printing - A Paradigm

Technical Library | 2008-12-03 19:39:00.0

This paper presents the analysis from a recent printing study employing a test vehicle that includes components such as 01005s to QFPs. In a recent publication, part of this study was presented focusing on 01005 printing only. This printing process was determined to be suitable for 01005s assembly and also analyzed based on statistical capability. The current paper will present the results from additional detailed analysis to determine if this process has the capability to provide sufficient solder paste deposits for larger components located on the same test board. In the future, the SMT industry may always look towards “Broadband Printing” as an alternative to dual stencil or stepped stencil printing technologies in order to meet the needs of both small and large components.

Speedline Technologies, Inc.

Advantages of Bismuth-based Alloys for Low Temperature Pb-Free Soldering and Rework

Technical Library | 2012-12-20 14:36:09.0

The increased function of personal electronic devices, such as mobile phones and personal music devices, has driven the need for smaller and smaller active and passive components. This trend toward miniaturization, occurring at the same time as the conversion to RoHS-compliant lead-free assembly, has been a considerable challenge to the electronics assembly industry. The main reason for this is the higher reflow process temperatures required for Pb-free assembly. These higher temperatures can thermally damage the PCB and the components. In addition, the higher reflow temperatures can negatively affect the solder joint quality, especially when coupled with the smaller paste deposits required for these smaller components. If additional thermal processing is required, the risk increases even more. First Published at SMTA's International Conference on Soldering and Reliability in Toronto, May 2011

Indium Corporation

Going Lead Free With Vapor Phase Soldering - Lead Free Is Still a Challenge For Major Industries.

Technical Library | 2014-01-30 18:08:04.0

As of today, the electronic industry is aware of the requirements for their products to be lead free. All components are typically available in lead free quality. This comprises packages like BGAs with BGA solder balls to PCB board finishes like HASL. The suppliers are providing everything that is needed. It is harder to get the old tin leaded (SnPb) components for new applications today, than lead free ones. So why has not everybody changed over fully yet and how can the challenges be overcome? A big concern in this transition process is reflow soldering. The process temperatures for lead free applications became much higher. Related with this is more stress for all the components. It affects the quality and reliability of the electronic units and products...

IBL - Löttechnik GmbH

Effective Methods to Get Volatile Compounds Out of Reflow Process

Technical Library | 2016-02-11 18:26:43.0

Although reflow ovens may not have been dramatically changed during the last decade the reflow process changes step by step. With the introduction of lead-free soldering not only operation temperatures increased, but also the chemistry of the solder paste was modified to meet the higher thermal requirements. Miniaturization is a second factor that impacts the reflow process. The density on the assembly is increasing where solder paste deposit volumes decreases due to smaller pad and component dimensions. Pick and place machines can handle more components and to meet this high through put some SMD lines are equipped with dual lane conveyors, doubling solder paste consumption. With the introduction of pin in paste to solder through hole components contamination of the oven increased due to dripping of the paste.

Vitronics Soltec

Additive Manufacturing for Next Generation Microwave Electronics and Antennas

Technical Library | 2020-08-13 00:59:03.0

The paper will discuss the integration of 3D printing and inkjet printing fabrication technologies for microwave and millimeter-wave applications. With the recent advancements in 3D and inkjet printing technology, achieving resolution down to 50 um, it is feasible to fabricate electronic components and antennas operating in the millimeter-wave regime. The nature of additive manufacturing allows designers to create custom components and devices for specialized applications and provides an excellent and inexpensive way of prototyping electronic designs. The combination of multiple printable materials enables the vertical integration of conductive, dielectric, and semi-conductive materials which are the fundamental components of passive and active circuit elements such as inductors, capacitors, diodes, and transistors. Also, the on-demand manner of printing can eliminate the use of subtractive fabrication processes, which are necessary for conventional microfabrication processes such as photolithography, and drastically reduce the cost and material waste of fabrication.

Georgia Institute of Technology

Automated Inspection Of PCB Components Using A Genetic Algorithm Template-Matching Approach

Technical Library | 2021-04-15 14:44:20.0

Automated inspection of surface mount PCB boards is a requirement to assure quality and to reduce manufacturing scrap costs and rework. This paper investigates methodologies for locating and identifying multiple objects in images used for surface mount device inspection. One of the main challenges for surface mount device inspection is component placement inspection.

Springer-Verlag

RULES FOR WORKING WITH 0201s AND OTHER SMALL PARTS

Technical Library | 2023-05-02 18:50:24.0

Surface-mount PCB components are smaller than their lead-based counterparts and provide a radically higher component density. They are available in a variety of shapes and sizes designated by a series of standardized codes curated by the electronics industry. Of these PCB components, the 0201-sized are the smallest, measuring 0.024 x 0.012 in. (0.6 x 0.3 mm) – that's 70% smaller than the previous 0402 level! The 0201 components are designed to improve reliability in space-constrained applications such as portable electronics like smartphones, tablets, robotics and digital cameras, but require delicate handling during the assembly process. Given the miniaturized dimensions of an 0201 package, it is crucial that the mounting process abide by a series of guidelines regarding the design of the PCB mounting pads and solderable metallization, PCB circuit trace width, solder paste selection, package placement and overages, solder paste reflow, solder stencil screening, and final inspection. It's advisable that one review this information when procuring the services of a PCB assembler.

Advanced Assembly, LLC.

Cleaning Flux Residue under Leadless Components using Objective Evidence to Determine Cleaning Performance

Technical Library | 2019-08-14 22:20:55.0

Cleanliness is a product of design, including component density, standoff height and the cleaning equipment’s ability to deliver the cleaning agent to the source of residue. The presence of manufacturing process soil, such as flux residue, incompletely activated flux, incompletely cured solder masks, debris from handling and processing fixtures, and incomplete removal of cleaning fluids can hinder the functional lifetime of the product. Contaminates trapped under a component are more problematic to failure. Advanced test methods are needed to obtain "objective evidence" for removing flux residues under leadless components.Cleaning process performance is a function of cleaning capacity and defined cleanliness. Cleaning performance can be influenced by the PCB design, cleaning material, cleaning machine, reflow conditions and a wide range of process parameters.This research project is designed to study visual flux residues trapped under the bottom termination of leadless components. This paper will research a non-destructive visual method that can be used to study the cleanability of solder pastes, cleaning material effectiveness for the soil, cleaning machine effectiveness and process parameters needed to render a clean part.

KYZEN Corporation

Carrier tape introduction and classification

Technical Library | 2019-07-27 07:13:16.0

Carrier Tape refers to a strip product used in the field of electronic packaging, which has a specific thickness, and equidistantly distributes holes (also called pockets) for holding electronic components in the longitudinal direction thereof. Positioning hole for index positioning.

Shenzhen Sewate Technology Co.,Ltd


component searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Stencil Printing 101 Training Course
SMT spare parts - Qinyi Electronics

High Precision Fluid Dispensers
Circuit Board, PCB Assembly & electronics manufacturing service provider

Best Reflow Oven
best pcb reflow oven

High Resolution Fast Speed Industrial Cameras.