Technical Library | 2023-11-09 08:53:45.0
Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!
Technical Library | 2021-09-01 15:26:46.0
The global electronics industry's ability to deliver seemingly limitless ongoing advancements in product capabilities has encouraged an insatiable consumer demand for more, better, and smaller. Demands for high functionality of mobile devices, smart watches, military, medical, audio, and wearable technology continue to drive requirements for miniaturisation.
Technical Library | 2021-07-13 19:51:10.0
Flexible electronics refers to a class of lightweight, flexible and electronic sensing components and electronic devices built on stretchable substrates1 that are used (and can be used) for a broad set of products and applications such as displays and sensors. The most prominent characteristic is that they can bend in contrast to electronic systems built in rigid materials. They are manufactured on flexible plastic substrates, such as polyamide, PEEK2 or transparent conductive polyester films3, or other materials such as paper, textile, or thin glass. The term flexible also refers to the roll-to-roll manufacturing process.
European Commission - Executive Agency for Small and Medium-sized Enterprises (EASME)
Technical Library | 2023-03-27 19:18:38.0
Electronic waste (e-waste) is currently the fastest growing hazardous waste stream that continues to be a challenging concern for the global environment and public health. The average useful life of electronic products has continued to decline, and obsolete products are being stored or discarded with increasing frequency. E-waste is hazardous, complex and expensive to treat in an environmentally sound manner. As a result, new challenges related to the management of e-waste have become apparent. Most electronic products contain a combination of hazardous materials, toxic materials, and valuable elements such as precious metals and rare earth elements. There are risks to human health associated with the disposal of E-waste in landfills, or treatment by incineration. Americans discard 400+ million electronic items per year recycling less than 20 percent in safe and sustainable manner. E-waste is exported from developed countries and processed informally using unsafe conditions in many regions of developing countries. A mixture of pollutants is released from these informal rudimentary operations. Exposure to e-waste recycling includes the dismantling of used electronics and the use of hydrometallurgical and pyrometallurgical processes, which emit toxic chemicals, to retrieve valuable components. Thermal analysis integrated with chromatographic and spectroscopic techniques are used to determine dangerous chemicals emitted during the burning of e-waste. The information is used to assess the risk of exposure of workers at these semi-formal recycling centers.
Technical Library | 2020-10-08 01:01:01.0
Flexible hybrid electronics (FHE) is emerging as a promising solution to combine the benefits of printed electronics and silicon technology. FHE has many high-impact potential areas, such as wearable applications, health monitoring, and soft robotics, due to its physical advantages, which include light weight, low cost and the ability conform to different shapes. However, physical deformations in the field can lead to significant testing and validation challenges. For example, designers must ensure that FHE devices continue to meet their specs even when the components experience stress due to bending. Hence, physical deformation, which is hard to emulate, has to be part of the test procedures for FHE devices. This paper is the first to analyze stress experience at different parts of FHE devices under different bending conditions. We develop a novel methodology to maximize the test coverage with minimum number of text vectors with the help of a mixed integer linear programming formulation. We validate the proposed approach using an FHE prototype and COMSOL Multiphysics simulations
Technical Library | 2019-05-23 21:56:56.0
Automatic on-line shoe sole spraying system: automatic shoe sole spraying system, simple and convenient operation, using 3D vision positioning system. Automatic recognition and automatic generation of spraying trajectory. Robot non-contact spraying gun is used to complete the process of shoe sole spraying with maturity, stability, high speed and high precision along the predetermined trajectory. The automatic generation of spraying trajectory is the realization of shoe sole spraying technology. Shoe sole spraying characteristics: 1.Positioning System: 3D Visual Positioning 2.Components: Intelligent Robot, Laser Scanner, Industrial Computer, Gum Spraying System, Conveyor Belt, Electrical Control System, etc. 3.Spraying time: slightly different according to shoe size and spraying time Fully automatic sole spraying advantages: 1. Simple application: suitable for soles of different specifications, models and sizes 2. Faster speed: 6-8 seconds to complete sole scanning and spraying, superior to similar products at home and abroad. 3. Quality stability: gum spraying trajectory is scheduled, gum dosage is fixed, gum spraying quality is greatly improved. 4. High cost performance: the same performance, the price is only 1/3 of the same type of equipment of European brand. 5. Reduce wear and tear: glue is fully utilized and not wasted, reducing human contact with glue. Intelligent operation advantage manual only need general operation can be automated workshop, mechanical arm automatic spraying glue, accurate spraying, reduce glue waste. Environmental protection effect of long-term close contact with glue seriously affects human health and mechanical work, glue does not directly contact, do not harm the human body. Fully automatic spraying, shoe sole adhesion process for automatic spraying machine, will not cause great challenges! With the deepening of personalized shoemaking, higher requirements have been put forward for the spraying technology in shoemaking process. The method of creating spraying trajectory must be adapted to shoes of different sizes and styles. The automatic generation of spraying trajectory is one of the key technologies to realize the automation of shoe sole spraying process. The method of off-line programming and real-time generation of spraying trajectory for robots based on the three-dimensional CAD model of sole and the data of sole. A new method of generating spray trajectory by scanning the sole of shoe upper with linear structured light sensor is presented. The feasibility of the method is verified by industrial robots. Aiming at the need of generating shoe sole spray rubber trajectory based on line structured light, the format standard of IGES file of three-dimensional model of shoe sole was tested. The shoe sole contour line and the shoe sole surface were extracted, and then the offset curve of the shoe sole contour line on the shoe sole surface was calculated to obtain the spray rubber trajectory. Three-dimensional profilometer is to use structured light to obtain sole information, effectively improve the automatic shoemaking spraying process, which will help to improve the efficiency of shoemaking, improve the quality of footwear products, and promote the development of personalized shoemaking.
1 |