Technical Library | 2023-08-16 18:48:50.0
One of our aerospace customers was looking to automate a few manual operations and asked for suggestions. This customer specializes in assemblies for inflight connectivity for commercial airlines and low orbit satellites. The dispensing process included the application of bonding to the sides of large and small components (4-axis) and the ability to cope with the changing viscosity during processing. The material used was EC-2216 B/A Two Part Epoxy and the largest board size was 12"x10"
Technical Library | 2023-12-18 11:33:57.0
Elevate your electronic manufacturing game with the I.C.T-D600 SMT Dispensing Machine! Precision, safety, and efficiency in one powerful solution. In the dynamic realm of electronic manufacturing, precision and efficiency are not just preferences but essential requirements. Introducing the I.C.T-D600, an automatic glue dispenser machine engineered to enhance production processes across various applications. From chip encapsulation to PCB assembly, SMT red-glue dispensing, LED lens production, and medical device creation, SMT dispensing machine is a versatile solution tailored to meet the demands of the industry. Essential Attributes Of The I.C.T-D600 Automatic Glue Dispenser Machine 1. Compliance with European Safety Standards: The I.C.T-D600 SMT dispensing machine prioritizes not only efficiency but also safety, boasting compliance with European safety standards and holding a CE certificate. This ensures a secure and reliable manufacturing environment, aligning with global quality benchmarks. 2. International Component Quality: Internationally renowned components form the core of the D600 SMT dispensing machine. From Panasonic servomotors to MINTRON CCD, each element is carefully selected, guaranteeing high performance and durability. This commitment to quality components results in a machine that operates seamlessly, reducing downtime and maintenance costs. 3. Impressive Performance Metrics: The SMT dispensing machinedoesn't just meet expectations; it surpasses them with exceptional performance metrics: Maximum Guide Rail Speed: 400mm/s Fastest Injection Valve Speed: 20 spots/sec Dispensing Accuracy: ±0.02mm Repeated Accuracy: ±0.01mm Machine Characteristics: Core Part – Jet Valve The non-contact jet dispensing method ensures high-speed operation (max jet speed: 20 spots/second), high accuracy with a minimum dispensing volume of 5nl, and flexibility with extremely small dispensing volumes. The thermostatic system for the flow channel and sprayer ensures uniform glue temperature, resulting in low maintenance costs and an extended service life. Enhanced Capacity: Non-contact jet dispensing eliminates the need for Z-axis motion. Integrated temperature control technology reduces manual intervention. Automatic glue compensation minimizes artificial regulation time. Dual-track design reduces waiting time. Automatic visual location identification and compensation. Non-contact height detection with laser reduces height detection time. Flexibility: Capable of handling substrates or backings of various sizes. Optional heating module. Independent control of dual tracks with user-friendly software. Fast switching between different product lines. Universal platform suitable for various processes with different glues
Technical Library | 2021-09-02 08:17:07.0
We are a professional manufacturer of PCB depaneling machines, which is workable for all boards, including flex and regid boards, v-scored boards and routed boards. Laser pcb depaneling is non-contact way without mechanical stress,this solution is good for modern precision PCB depaneling. It has below advantages: 1. No dust The production environment of the circuit board industry is carried out in the dust-free workshop. The traditional pcb depaneling equipment, such as blade moving type machine, will inevitably produce residues and micro powder, which will pollute the 10000 and 1000 class dust-free workshops and affect the conductivity of products. The UV laser PCB cutting machine is a vaporization processing process, which will not produce dust and is conducive to the conductivity of the product. 2. High cutting precision The processing gap of high-precision traditional processing equipment can not reach the gap width of less than 100 microns, which will cause certain damage to the lines on the edge or PCBA circuit board containing components. The focus spot of the laser cutting machine is small, and the ultraviolet cold processing mode has little thermal impact on the edge of the circuit board. The cutting position accuracy is less than 50 microns, and the cutting size accuracy is less than 30 microns, which will not affect the edge of the circuit board, and the precision is high. 3. No stress Traditional processing methods generally have V-grooves, which will cause certain damage to the board in the manufacturing process. The UV laser PCB cutting machine can directly cut the bare board without making V-grooves. In addition, the traditional processing methods directly use tools to act on the circuit board, especially the stamping method has a great impact on the circuit board, which is easy to cause board deformation. The laser cutting machine is a non-contact processing mode, which acts on the surface of the material through the high-energy beam, which will not cause the influence of stress and the deformation and damage of the circuit board. 4. For special-shaped cutting, it is easy to automate The UV laser PCB cutting machine can cut for any shape without replacing any props and fixtures, and without steel mesh. The same equipment can meet special-shaped and straight-line cutting, which is easy to realize assembly line automatic production and high flexibility. It is easy to improve production efficiency and save production process and production cycle. In particular, it can quickly and efficiently meet the needs of rapid proofing, directly import the drawing, and then locate the cutting. 5. High compatibility The UV laser PCB cutting machine can process the materials around the circuit board, such as PCB, FPC, covering film, pet, reinforcing board, IC, ultra-thin metal cutting, etc. it has strong practicability, is compatible with the processing of a variety of materials, is easy to operate, can be imported into the drawing, does not need to adjust any mechanical parts, and is easy to operate and maintain. 6. Good cutting edge effect The cutting edge is smooth and neat without burr. It can be processed and formed directly according to the size of the drawing, which is conducive to improving the yield of the product. It can be directly installed into the subsequent process without further processing. For more details about UV laser depaneling, please feel free to contact us. www.pcbdepanelingrouter.com
Technical Library | 2015-08-27 15:32:16.0
Ever since there has been a widespread usage of surface mount parts, the trend of continued shrinkage of devices with ever finer pitches has continued to challenge PCB assemblers for the rework of same. Todays' pitches are commonly 0.5 to 0.4mm with packages of tiny outline sizes, 5 -10mm square, making the rework of such devices a challenge. In addition to the handling and inspection challenges comes the board density. Spacing to neighboring components continues to be compressed so the rework techniques should not damage neighboring components.
Technical Library | 2023-06-12 16:52:47.0
The technological advancement of component and PCB technology from through-hole to surface mount (SMT) is a major factor in the miniaturization of today's electronics. Smaller and smaller component sizes and more densely packed PCBs lead to more powerful designs in much smaller product packages. With advancement, however, comes a new set of challenges in building these smaller, more complex assemblies. This is the challenge original equipment manufacturers (OEM) and contract manufacturers (CM) face today.
Technical Library | 2014-06-05 16:44:07.0
Stencil printing capability is becoming more important as the range of component sizes assembled on a single board increases. Coupled with increased component density, solder paste sticking to the aperture sidewalls and bottom of the stencil can cause insufficient solder paste deposits and solder bridging. Yield improvement requires increased focus on stencil technology, printer capability, solder paste functionality and understencil cleaning.(...) The purpose of this research is to study the wipe sequence, wipe frequency and wipe solvent(s) and how these factors interact to provide solder paste printing yield improvement.
Technical Library | 2020-12-29 20:55:46.0
Voiding in solder joints has been studied extensively, and the effects of many variables compared and contrasted with respect to voiding performance. Solder paste flux, solder powder size, stencil design, circuit board design, via-in-pad design, surface finish, component size, reflow profile, vacuum reflow, nitrogen reflow and other parameters have been varied and voiding quantified for each. The results show some differences in voiding performance with respect to most of these variables but these variables are not independent of each other. Voiding in solder joints is a complex issue that often requires multiple approaches to reduce voiding below required limits. This paper focuses on solutions to voiding for commonly used bottom terminated components (BTCs).
Technical Library | 2023-05-02 18:54:30.0
Surface-mount PCB components are smaller than their lead-based counterparts and provide a radically higher component density. They are available in a variety of shapes and sizes designated by a series of standardized codes curated by the electronics industry. Of these PCB components, the 0201-sized are the smallest, measuring 0.024 x 0.012 in. (0.6 x 0.3 mm) – that's 70% smaller than the previous 0402 level! The 0201 components are designed to improve reliability in space-constrained applications such as portable electronics like smartphones, tablets, robotics and digital cameras, but require delicate handling during the assembly process.
Technical Library | 2015-09-03 18:06:11.0
While the density of chip-to-chip and chip-to-package component interconnections increases and their size decreases the ease of manufacture and the interconnection reliability are being reduced. This paper will introduce the use of embedded fibers in the interconnections as a means of addressing these issues.
Technical Library | 2021-09-01 15:31:39.0
The long-standing trend in the electronics industry has been the miniaturization of electronic components. It is projected that this trend will continue as Original Equipment Manufacturers (OEMs) and Electronic Manufacturing Service (EMS) providers strive to reduce "real estate" on printed circuit boards. Typically, the miniaturization of components can be achieved by integration or size reduction. At present, size reduction is considered to be more cost effective and flexible than integration. Passive components, which are used in limiting current, terminating transmission lines and de-coupling switching noise, are the primary focus in size reduction due to their variety of uses.