Technical Library | 2016-03-31 17:39:52.0
Electrical overstress causes damage to sensitive components, including latent damage. A significant source of EOS is high-frequency noise in automated manufacturing equipment. This paper analyses sources of such noise, how it affects components and how to mitigate this problem.
Technical Library | 2019-08-15 13:31:52.0
Cracks in ceramic chip capacitors can be introduced at any process step during surface mount assembly. Thermal shock has become a "pat" answer for all of these cracks, but about 75 to 80% originate from other sources. These sources include pick and place machine centering jaws, vacuum pick up bit, board depanelization, unwarping boards after soldering, test fixtures, connector insulation, final assembly, as well as defective components. Each source has a unique signature in the type of crack that it develops so that each can be identified as the source of error.
Technical Library | 1999-05-06 10:46:06.0
Pentium-class portables present significant packaging problems. The heat generated inside a notebook not only reduces microprocessor reliability, but the reliability of peripheries such as hard drives and video chips. Although the processor is the primary heat-generating source, it isn’t always the component least tolerant of temperature...
Technical Library | 2010-03-11 19:33:47.0
Counterfeit products have been a growing problem worldwide, and the electronics industry has been no exception. Authentication of electronic components by electrical and physical testing can provide a cost-effective means of risk management, aimed at keeping counterfeits out of the supply chain. In this presentation, we will review sources of counterfeit components, and discuss the capabilities and limitations of test processes used for authentication. We will then present examples of component authentication using these tools.
Technical Library | 2022-09-25 20:18:33.0
Printed circuit board (PCB) bending and/or flexing is an unavoidable phenomenon that is known to exist and is easily encountered during electronic board assembly processes. PCB bending and/or flexing is the fundamental source of tensile stress induced on the electronic components on the board assembly. For more brittle components, like ceramic-based electronic components, micro-cracks can be induced, which can eventually lead to a fatal failure of the components. For this reason, many standards organizations throughout the world specify the methods under which electronic board assemblies must be tested to ensure their robustness, sometimes as a pre-condition to more rigorous environmental tests such as thermal cycling or thermal shock.
Technical Library | 2016-04-08 01:19:52.0
PCB assembly designs become more complex year-on-year, yet early-stage form/fit compliance verification of all designed-in components to the intended manufacturing processes remains a challenge. So long as librarians at the design and manufacturing levels continue to maintain their own local standards for component representation, there is no common representation in the design-to-manufacturing phase of the product lifecycle that can provide the basis for transfer of manufacturing process rules to the design level. A comprehensive methodology must be implemented for all component types, not just the minority which happen to conform to formal packaging standards, to successfully left-shift assembly and test DFM analysis to the design level and thus compress NPI cycle times.(...)This paper will demonstrate the technological components of the working solution: the logic for deriving repeatable and standardized package and pin classifications from a common source of component physical-model content, the method for associating DFA and DFT rules to those classifications, and the transfer of those rules to separate DFM and NPI analysis tools elsewhere in the design-through-manufacturing chain resulting in a consistent DFM process across multiple design and manufacturing organizations.
Technical Library | 1999-05-07 10:47:00.0
White residue remaining after cleaning circuit board assemblies can be caused by a variety of chemicals and reactions. Rosin and water-soluble fluxes, circuit board resins and epoxies, component materials and other contamination all contribute to this complex chemistry. This paper discusses many of the sources of the residues that seem to be an ever-increasing occurrence.
Technical Library | 2018-09-12 21:04:28.0
Counterfeit electronic components are finding their way into today’s defense electronics. The problem gets even more complex when procuring DMS (diminishing manufacturing source) parts. This paper will provide a brief introduction to counterfeit prevention and detection standards, particularly as they relate to the Aerospace and Defense sector. An analysis of industry information on the types and nature of counterfeit components will be discussed in order to illustrate those most likely to be counterfeited, followed a specific case at a major defense contractor.
Technical Library | 2006-06-29 13:37:36.0
Electronic Packaging is a critical part of all electronic devices and can be a source of the reliability problems experienced by systems using those devices. In many cases, the packaging defects are intermittent in nature and difficult to detect. This paper describes a tester that has been used for 20 years on commercial products and has proven to be extremely effective in detecting these defects prior to component assembly.
Technical Library | 2019-08-14 22:20:55.0
Cleanliness is a product of design, including component density, standoff height and the cleaning equipment’s ability to deliver the cleaning agent to the source of residue. The presence of manufacturing process soil, such as flux residue, incompletely activated flux, incompletely cured solder masks, debris from handling and processing fixtures, and incomplete removal of cleaning fluids can hinder the functional lifetime of the product. Contaminates trapped under a component are more problematic to failure. Advanced test methods are needed to obtain "objective evidence" for removing flux residues under leadless components.Cleaning process performance is a function of cleaning capacity and defined cleanliness. Cleaning performance can be influenced by the PCB design, cleaning material, cleaning machine, reflow conditions and a wide range of process parameters.This research project is designed to study visual flux residues trapped under the bottom termination of leadless components. This paper will research a non-destructive visual method that can be used to study the cleanability of solder pastes, cleaning material effectiveness for the soil, cleaning machine effectiveness and process parameters needed to render a clean part.
WINSOURCE-Leading Electronic Components Distributor | Online Store
23046 Avenida de la Carlota
Laguna Hills, WA USA
Phone: 086-755-83957766