Technical Library: conductors (Page 1 of 2)

Gaskets For The Semi Conductor Industry

Technical Library | 2024-06-05 17:51:08.0

What type of materials are being used for gaskets in the semi-conductor industry.

A-Laser, Inc.

Influence of Copper Conductor Surface Treatment for High Frequency PCB on Electrical Properties and Reliability

Technical Library | 2019-02-13 13:45:11.0

Development of information and telecommunications network is outstanding in recent years, and it is required for the related equipment such as communication base stations, servers and routers, to process huge amount of data in no time. As an electrical signal becomes faster and faster, how to prevent signal delay by transmission loss is a big issue for Printed Circuit Boards (PCB) loaded on such equipments. There are two main factors as the cause of transmission loss; dielectric loss and conductor loss. To decrease the dielectric loss, materials having low dielectric constant and low loss tangent have been developed. On the other hand, reducing the surface roughness of the copper foil itself to be used or minimizing the surface roughness by modifying surface treatment process of the conductor patterns before lamination is considered to be effective in order to decrease the conductor loss. However, there is a possibility that reduction in the surface roughness of the conductor patterns will lead to the decrease in adhesion of conductor patterns to dielectric resin and result in the deterioration of reliability of PCB itself. In this paper, we will show the evaluation results of adhesion performance and electrical properties using certain type of dielectric material for high frequency PCB, several types of copper foil and several surface treatment processes of the conductor patterns. Moreover, we will indicate a technique from the aspect of surface treatment process in order to ensure reliability and, at the same time, to prevent signal delay at the signal frequency over 20 GHz.

MEC Company Ltd.

Mixed Voltages And Aluminum Conductors: Assesing New Electrcal Technology

Technical Library | 2018-02-07 22:50:31.0

The architecture of vehicle electrical systems is changing rapidly. Electric and hybrid vehicles are driving mixed voltage systems, and cost pressures are making conductor materials like aluminum an increasingly viable competitor to copper. This paper presents tradeoff studies at the vehicle level, and how to automatically generate an electrical Failure Mode Effects and Analysis (FMEA) report, as well as how to optimize wire sizes for both copper and aluminum at the platform level.

Mentor Graphics

Bare PCB Inspection By Mean Of ECT Technique With Spin-Valve GMR Sensor

Technical Library | 2021-05-06 13:45:49.0

The high-sensitive micro eddy-current testing (ECT) probe composed of planar meander coil as an exciter and spin-valve giant magneto-resistance (SV-GMR) sensor as a magnetic sensor for bare printed circuit board (PCB) inspection is proposed in this paper. The high-sensitive micro ECT probe detects the magnetic field distribution on the bare PCB and the image processing technique analyzes output signal achieved from the ECT probe to exhibit and to identify the defects occurred on the PCB conductor. The inspection results of the bare PCB model show that the proposed ECT probe with the image processing technique can be applied to bare PCB inspection. Furthermore, the signal variations are investigated to prove the possibility of applying the proposed ECT probe to inspect the high-density PCB that PCB conductor width and gap are less than 100 μm.

Kanazawa University, ,

Conductive Anodic Filament Failure: A Materials Perspective

Technical Library | 2023-03-16 18:51:43.0

Conductive anodic filament (CAF) formation was first reported in 1976.1 This electrochemical failure mode of electronic substrates involves the growth of a copper containing filament subsurface along the epoxy-glass interface, from anode to cathode. Despite the projected lifetime reduction due to CAF, field failures were not identified in the 1980s. Recently, however, field failures of critical equipment have been reported.2 A thorough understanding of the nature of CAF is needed in order to prevent this catastrophic failure from affecting electronic assemblies in the future. Such an understanding requires a comprehensive evaluation of the factors that enhance CAF formation. These factors can be grouped into two types: (1) internal variables and (2) external influences. Internal variables include the composition of the circuit board material, and the conductor metallization and configuration (i.e. via to via, via to surface conductor or surface conductors to surface conductors). External influences can be due to (1) production and (2) storage and use. During production, the flux or hot air solder leveling (HASL) fluid choice, number and severity of temperature cycles, and the method of cleaning may influence CAF resistance. During storage and use, the principal concern is moisture uptake resulting from the ambient humidity. This paper will report on the relationship between these various factors and the formation of CAF. Specifically, we will explore the influences of printed wiring board (PWB) substrate choice as well as the influence of the soldering flux and HASL fluid choices. Due to the ever-increasing circuit density of electronic assemblies, CAF field failures are expected to increase unless careful attention is focused on material and processing choices.

Georgia Institute of Technology

A New (Better) Approach to Tin Whisker Mitigation

Technical Library | 2011-03-03 16:54:47.0

Most of the electronics industry by now knows about tin whiskers. They know whiskers are slim metallic filaments that emanate from the surface of tin platings. They know these filaments are conductive and can cause shorts across adjacent conductors. And they know that these shorts can cause some really bad failures (see nepp.nasa.gov/whisker/ for a list longer than you need). But, with all of this knowledge, the industry is still struggling on how to predict and prevent these "Nefarious Needles of Pain".

DfR Solutions (acquired by ANSYS Inc)

Determination of Copper Foil Surface Roughness from Micro-section Photographs

Technical Library | 2013-04-25 11:42:01.0

Specification and control of surface roughness of copper conductors within printed circuit boards (PCBs) are increasingly desirable in multi-GHz designs as a part of signal-integrity failure analysis on high-speed PCBs. The development of a quality-assurance method to verify the use of foils with specified roughness grade during the PCB manufacturing process is also important... First published in the 2012 IPC APEX EXPO technical conference proceedings.

Cisco Systems, Inc.

Signal Transmission Loss due to Copper Surface Roughness in High-Frequency Region

Technical Library | 2015-04-30 20:17:03.0

Higher-speed signal transmission is increasingly required on a printed circuit board to handle massive data in electronic systems. So, signal transmission loss of copper wiring on a printed circuit board has been studied. First, total signal loss was divided into dielectric loss and conductor loss quantitatively based on electromagnetic theory. In particular, the scattering loss due to surface roughness of copper foil has been examined in detail. And the usefulness of the copper foil with low surface roughness has been demonstrated.

Mitsui Kinzoku Group

Where PCBs and Printed Electronics Meet

Technical Library | 2016-07-14 18:21:29.0

Printed Circuit Boards (PCBs) and Printed Electronics (PE) both describe conductor/substrate combinations that make connections. Both PCB and PE technologies have been in use for a long time in one form or another with PCBs currently the standard for complex, high speed electronics and PE for user interface, complex form factor or other film based applications. New and innovative applications create the opportunity for promising structures. Taking advantage of the PCB shop's capability as well as the material set can help create these structures and indeed PE materials can find use in more traditional PCBs. New materials and new uses of existing materials open up many possibilities in electronic interconnecting structures. PCB manufacturers have a complex manufacturing infrastructure, well suited for both additive and subtractive conductor processing. While built around rigid material processing (flex PCB being the exception), there are opportunities for PE substrate processing. As electronics devices are applied to more and more parts of our lives, we need to continually push for better solutions. Fit, function, manufacturability, and cost are all important considerations. Crossing the PCB/PE boundary is a way to meet the challenge.

INSULECTRO

The Effects of PCB Fabrication on High-Frequency Electrical Performance

Technical Library | 2016-07-21 18:16:06.0

Achieving optimum high-frequency printed-circuit-board (PCB) performance is not simply a matter of specifying the best possible PCB material, but can be significantly impacted by PCB fabrication practices. In addition to appropriate circuit materials and circuit design configurations to meet target performance goals, a number of PCB material-related issues can affect final performance, including the use of soldermask, the PCB copper plating thickness, the conductor trapezoidal effect, and plating finish; understanding the effects of these material issues can help when fabricating high-frequency circuits for the best possible electrical performance.

Rogers Corporation

  1 2 Next

conductors searches for Companies, Equipment, Machines, Suppliers & Information

Global manufacturing solutions provider

High Precision Fluid Dispensers
2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven
Software for SMT

Best Reflow Oven


SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...