Technical Library | 2023-11-09 08:53:45.0
Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!
Technical Library | 2024-09-02 21:02:46.0
In conformal coating, there are several mechanisms that cause failure of printed circuit boards (PCBs). In a series of technical bulletins SCH will examine the common failure mechanisms in conformal coating including capillary flow, delamination, cracking, loss of adhesion, dewetting, corrosion, orange peel, pinholes, bubbles and foam.
Technical Library | 2013-10-22 07:38:42.0
In conformal coating many components and printed circuit board locations must remain uncoated due to the insulating nature of the coating. The purpose of the conformal coating masking materials is to prevent migration of the conformal coatings into components that need to clear and designated keep out areas. This applies to both liquid conformal coating and Parylene processing. Get this basic process wrong and it can be a big problem, leading to the next stage of either repairing the conformal coating leak, stripping the conformal coating off the circuit board, removing a component to replace it or scrapping the board. This paper reviews typical masking application methods in conformal coating and provides advice on minimising problems.
Technical Library | 2021-08-11 01:00:37.0
Conformal coatings and potting materials continue to create issues for the electronics industry. This webinar will dig deeper into the failure modes of these materials, specifically issues with Coefficient of Thermal Expansion (CTE), delamination, cracking, de-wetting, pinholes/bubbles and orange peel issues with conformal coatings and what mitigation techniques are available. Similarly, this webinar will look at the failure modes of potting materials, (e.g Glass Transition Temperature (Tg), PCB warpage, the effects of improper curing and potential methods for correcting these situations.
Technical Library | 2023-07-04 17:31:22.0
Conformal Coatings are polymeric materials used to protect circuitry, parts, and related components. They are most commonly used to protect printed circuit boards (PCBs) and electronic devices. However, conformal coatings can be applied to a wide variety of materials, including metal, plastic, silicone, ceramics, glass, and even paper. We use the term "substrate" to refer to an object or material that's been coated with a conformal coating.
Technical Library | 2021-10-06 17:54:32.0
The corrosion of Nickel-Palladium-Gold (Ni-Pd-Au) finish terminals in humid environments is known to be reduced with the application of a conformal coating such as acrylic. Corrosion has a higher rate of occurrence around the terminal 'knee' of a surface mount component, which may be reduced with the application of conformal coatings. Although radio frequency (RF) plasma processing is generally known to enhance conformity of conformal coating to surfaces through ionic bombardment, the effect on the functionality of assembled printed circuit boards (PCB) is not as well known. The purpose of this study is to assess whether RF plasma processing can enhance the adhesive and coverage qualities of an acrylic conformal coating on PCBs
Technical Library | 2015-07-21 13:50:37.0
Achieving an even coat at the right desired thickness is a major challenge when it comes to applying conformal coating to a Printed Circuit Board (PCB). Applying a coating too thin will ultimately render the electronic assembly vulnerable to potential environmental risks therefore defeating the purpose of the coating. Apply the coat too thick, and it could leave the electronic specific components non-functional therefore destroying the electronic assembly entirely. Coating thickness must meet quality specifications. Measurements for coating thickness may be taken while film is dry or wet. Once measurements are recorded, thickness is compared to quality specifications and fluid dispensing automation machinery is calibrated as necessary. There are a handful of methods for measuring conformal coating thickness that are commonly used in the Electronic Manufacturing Services (EMS) and Original Electronic Manufacturer (OEM) industries. A few commonly used methods for checking conformal coating thickness include:
Technical Library | 2017-06-01 17:12:08.0
The corrosion of Nickel-Palladium-Gold (Ni-Pd-Au) finish terminals in humid environments is known to be reduced with the application of a conformal coating such as acrylic. Corrosion has a higher rate of occurrence around the terminal ‘knee’ of a surface mount component, which may be reduced with the application of conformal coatings. Although radio frequency (RF) plasma processing is generally known to enhance conformity of conformal coating to surfaces through ionic bombardment, the effect on the functionality of assembled printed circuit boards (PCB) is not as well known. The purpose of this study is to assess whether RF plasma processing can enhance the adhesive and coverage qualities of an acrylic conformal coating on PCBs, specifically on Ni-Pd-Au terminals with a knee, and if plasma processing has an effect on the electrical functionality of components and fully assembled PCB.
Technical Library | 2023-02-13 19:14:03.0
Technology Focus: Develop and evaluate nanoparticle filled conformal coatings designed to provide long term whisker penetration resistance and coverage on tin rich metal surfaces prone to whisker growth in commercial lead-free electronics used in modern DoD systems. Research Objectives: Identify the fundamental mechanisms by which conformal coatings provide long-term tin whisker penetration resistance and inhibit nucleation/growth. Correlate mechanical properties and coverage thickness to whisker penetration resistance. Project Progress and Results: Functionalized nanosilica and non-functional nanoalumina enhanced polyurethane conformal coatings have shown improved spray coating coverage characteristics and crack resistance during thermal cycling fatigue testing. Lead-free assembly whisker mitigation validation testing is in process. Technology Transition: Current project partners provide coating materials to industry. SERDP test data will be considered during updates to the DoD adopted IPC standards for coating materials and coverage.
Technical Library | 2016-09-22 17:52:59.0
Conformal Coatings are often used to increase the reliability of electronic assemblies operating in harsh or corrosive environments where the product would otherwise fail prematurely. Conformal coatings are often qualified to international standards, intended to enable users to better differentiate between suitable conformal coating chemistries, but always on a flat test coupon, which is not representative of real world use conditions. In order to better correlate international standards with real world-use conditions, three-dimensional Surface Insulation Resistance (SIR) test boards have been manufactured with dummy components representative of those commonly used on printed circuit assemblies...