Technical Library | 2013-10-22 07:38:42.0
In conformal coating many components and printed circuit board locations must remain uncoated due to the insulating nature of the coating. The purpose of the conformal coating masking materials is to prevent migration of the conformal coatings into components that need to clear and designated keep out areas. This applies to both liquid conformal coating and Parylene processing. Get this basic process wrong and it can be a big problem, leading to the next stage of either repairing the conformal coating leak, stripping the conformal coating off the circuit board, removing a component to replace it or scrapping the board. This paper reviews typical masking application methods in conformal coating and provides advice on minimising problems.
Technical Library | 2016-05-19 16:03:37.0
As consumers become more reliant on their handheld electronic devices and take them into new environments, devices are increasingly exposed to situations that can cause failure. In response, the electronics industry is making these devices more resistant to environmental exposures. Printed circuit board assemblies, handheld devices and wearables can benefit from a protective conformal coating to minimize device failures by providing a barrier to environmental exposure and contamination. Traditional conformal coatings can be applied very thick and often require thermal or UV curing steps that add extra cost and processing time compared to alternative technologies. These coatings, due to their thickness, commonly require time and effort to mask connectors in order to permit electrical conductivity. Ultra-thin fluorochemical coatings, however, can provide excellent protection, are thin enough to not necessarily require component masking and do not necessarily require curing. In this work, ultra-thin fluoropolymer coatings were tested by internal and industry approved test methods, such as IEC (ingress protection), IPC (conformal coating qualification), and ASTM (flowers-of-sulfur exposure), to determine whether this level of protection and process ease was possible.
1 |