Technical Library: contamination chlorine wire bonding (Page 1 of 1)

Effect of Silicone Contamination on Assembly Processes

Technical Library | 2013-02-07 17:01:46.0

Silicone contamination is known to have a negative impact on assembly processes such as soldering, adhesive bonding, coating, and wire bonding. In particular, silicone is known to cause de-wetting of materials from surfaces and can result in adhesive failures. There are many sources for silicone contamination with common sources being mold releases or lubricants on manufacturing tools, offgassing during cure of silicone paste adhesives, and residue from pressure sensitive tape. This effort addresses silicone contamination by quantifying adhesive effects under known silicone contaminations. The first step in this effort identified an FT-IR spectroscopic detection limit for surface silicone utilizing the area under the 1263 cm-1 (Si-CH3) absorbance peak as a function of concentration (µg/cm2). The next step was to pre-contaminate surfaces with known concentrations of silicone oil and assess the effects on surface wetting and adhesion. This information will be used to establish guidelines for silicone contamination in different manufacturing areas within Harris Corporation... First published in the 2012 IPC APEX EXPO technical conference proceedings.

Harris Corporation

Soldering Immersion Tin

Technical Library | 2019-04-10 22:08:31.0

The stimulating impact of the automotive industry has sharpened focus on immersion tin (i-Sn) more than ever before. Immersion tin with its associated attributes, is well placed to fulfill the requirements of such a demanding application. In an environment dominated by reliability, the automotive market not only has very stringent specifications but also demands thorough qualification protocols. Qualification is ultimately a costly exercise. The good news is that i-Sn is already qualified by many tier one OSATs. The focus of this paper is to generate awareness of the key factors attributed to soldering i-Sn. Immersion tin is not suitable for wire bonding but ultimately suited for multiple soldering applications. The dominant topics of this paper will be IMC formations in relation to reflow cycles and the associated solderability performance. Under contamination free conditions, i-Sn can provide a solderable finish even after multiple reflow cycles. The reflow conditions employed in this paper are typical for lead free soldering environments and the i-Sn thicknesses are approximately 1 μm.

Atotech

  1  

contamination chlorine wire bonding searches for Companies, Equipment, Machines, Suppliers & Information

Electronics Equipment Consignment

High Precision Fluid Dispensers
pressure curing ovens

High Throughput Reflow Oven
convection smt reflow ovens

World's Best Reflow Oven Customizable for Unique Applications
2024 Eptac IPC Certification Training Schedule

Training online, at your facility, or at one of our worldwide training centers"