Technical Library: contract manufacturer of pcb assemblies (Page 1 of 2)

PCB Assembly With Obsolete Parts and Hard-To-Find Components

Technical Library | 2018-03-13 14:12:34.0

Many companies take their supply chain for granted until they need an obsolete part or a hard-to-find component. Then the importance of having resourceful contract manufacturing partners becomes an incredibly valuable asset.

Power Design Services

Conquering SMT Stencil Printing Challenges with Today's Miniature Components

Technical Library | 2023-06-12 16:52:47.0

The technological advancement of component and PCB technology from through-hole to surface mount (SMT) is a major factor in the miniaturization of today's electronics. Smaller and smaller component sizes and more densely packed PCBs lead to more powerful designs in much smaller product packages. With advancement, however, comes a new set of challenges in building these smaller, more complex assemblies. This is the challenge original equipment manufacturers (OEM) and contract manufacturers (CM) face today.

Fine Line Stencil, Inc.

Evaluation, Selection and Qualification of Replacement Reworkable Underfill Materials

Technical Library | 2019-02-27 15:23:47.0

A study was performed to investigate, evaluate and qualify new reworkable underfill materials to be used primarily with ball grid arrays (BGAs), Leadless SMT devices, QFNs, connectors and passive devices to improve reliability. The supplier of the sole source, currently used underfill, has indicated they may discontinue its manufacture in the near future. The current underfill material is used on numerous circuit card assemblies (CCAs) at several sites and across multiple programs/business areas. In addition, it is used by several of our contract CCA suppliers.The study objectives include evaluation of material properties for down select, dispensability and rework evaluation for further down select, accelerated life testing for final selection and qualification; and process development to implement into production and at our CCA suppliers. The paper will describe the approach used, material property test results and general findings relative to process characteristics and rework ability.

Northrop Grumman Corporation

7 Benefits of Choosing Professional PCB Manufacturers and Assemblers

Technical Library | 2020-05-28 02:19:28.0

Properly functioning printed circuit boards are essential for both manufacturers of electronic devices and also the developers if the overall intent is for the electronic device to function at high capacity. From designing the schematics of the printed circuit boards to testing the products, there is no process of PCB manufacturing and/or assembly that can be taken for granted. While it's true that you can attempt this process on your own, especially if you are in possession of a large scale manufacturing facility, here are a few reasons why it would be a better option to opt for a professional company for PCB manufacturing and assembly. 1. Variety A professional printed circuit boards manufacturing company will be able to offer you a huge variety. You will be able to choose from rigid, flexible, or rigid-flex. What's more, the PCBs will be customized as per the need of the application. 2. Quality Professional and good printed circuit board manufacturing and assembling companies might cost you just a little bit extra but they also guarantee to produce the best results and offer very high quality products. In the end, it is quality that will make the difference between mediocre and a high functioning PCB. 3. Cost Efficiency Since you don't have to waste time or resources on buying equipment to produce the best PCBs or hiring staff to oversee the process, you can actually end up saving money. You can even save on PCB assembly cost by hiring this job out. All you have to do is to negotiate the quote and sit back, relax, and wait for the PCBs to be delivered to you. 4. Eliminate Design Flaws Design engineers hired by PCB manufacturing and assembling companies use the best graphic software to develop and test the schematics of PCBs. This increases the chances of eliminating flaws in the printed circuit boards during the initial design phase. 5. Multilayer PCB Manufacturing and Assembly The process of manufacturing and assembling multilayer PCBs is as intricate as it sounds. All processes of manufacturing and assembling multilayer PCBs require the best machines and trained technicians to pass the quality and functionality tests. Manufacturing and assembling multilayer printed circuit boards yourself is going to cost you a lot. Even the smallest of mistakes during the manufacturing and assembling process might render the entire PCB entirely useless. 6. Save Time PCBs are just a single part of the electronic device. To complete the device, many more pieces would be needed. The manufacturers of the electronic device can hire out the job of manufacturing or assembling the PCBs, which will mean they will have one less chore to do. This, in turn, will save you a lot of time which could be spent on elevating the quality of the product. 7. Experience Experience makes all the difference. It is what makes the name of any company reliable in the market. Long experience of manufacturing and assembling printed circuit boards makes the company well versed in the process and it also makes it an expert to identify design, manufacturing, assembling, and testing needs of certain applications We, at Asia Pacific Circuits, offer these benefits and so much more. For quick turn PCB assembly, PCB manufacturing and PCB designing, you can contact us anytime.

Asia Pacific Circuits Co., Ltd

Success Story of PCB Assembly Trend

Technical Library | 2016-08-04 10:34:35.0

With the onset of 1900’s, the novelty of printed circuits boards got started with a profound concept of constructing an electrical path on an isolated surface of a board. The initial trend of printed circuit board got into a vain to develop and upgrade the radios and gramophones. Gradually the notion of ‘Through Hole Technique’ came into picture to produce a double sided PCB. In mid 1990’s the idea of auto assembly process was introduced by PCB Manufacturer USA. This was a point of modern touch to enhance the fabrication process with automated soldering technique. The research and development picked up a pace for end to end electronic solutions for defense and US army.

4PCB Assembly

Review of Interconnect Stress Testing Protocols and Their Effectiveness in Screening Microvias

Technical Library | 2016-11-30 15:53:15.0

The use of microvias in Printed Circuit Boards (PCBs) for military hardware is increasing as technology drives us toward smaller pitches and denser circuitry. Along with the changes in technology, the industry has changed and captive manufacturing lines are few and far between. As PCBs get more complicated, the testing we perform to verify the material was manufactured to our requirements before they are used in an assembly needs to be reviewed to ensure that it is sufficient for the technology and meets industry needs to better screen for long-term reliability. The Interconnect Stress Testing (IST) protocol currently used to identify manufacturing issues in plated through holes, blind, or buried vias are not necessarily sufficient to identify problems with microvias. There is a need to review the current IST protocol to determine if it is adequate for finding bad microvias or if there is a more reliable test that will screen out manufacturing inconsistencies. The objective of this research is to analyze a large population of PCB IST coupons to determine if there is a more effective IST test to find less reliable microvias in electrically passing PCB product and to screen for manufacturing deficiencies. The proposed IST test procedure will be supported with visual inspection of corresponding microvia cross sections and Printed Wiring Assembly (PWA) acceptance test results. The proposed screening will be shown to only slightly affect PCB yield while showing a large benefit to screening before PCBs are used in an assembly.

Raytheon

Method for the Manufacture of an Aluminum Substrate PCB and its Advantages

Technical Library | 2015-09-17 17:36:56.0

RoHS legislated restrictions on the materials used in electronics manufacture have imparted significant challenges on the electronics industry since their introduction in 2006. The greatest impacts have been felt by the mandated elimination of lead from electronic solder followed by the demand for the elimination of haloids from flame retardants used in traditional PCB laminates. In the years which have followed the electronics industry has been beset with a host of new challenges in its effort to comply. Failure mechanisms, both new and old, have surfaced which demand solution and the industry suppliers and manufacturing technologists have worked diligently to remedy those vexing faults through the development of a wide range of new materials and equipment for both board manufacture and assembly, along with modifications to the processes used in the manufacture and assembly of printed circuit boards.

Verdant Electronics

Effect of Gold Content on the Microstructural Evolution of SAC305 Solder Joints Under Isothermal Aging

Technical Library | 2013-08-29 19:52:43.0

Au over Ni on Cu is a widely used printed circuit board (PCB) surface finish, under bump metallization (UBM), and component lead metallization. It is generally accepted that less than 3 wt.% Au in Sn-Pb solder joints inhibits formation of detrimental intermetallic compounds (IMC). However, the critical limit for Au content in Pb-free solder joints is not well established. Three surface-mount package platforms, one with a matte Sn surface finish and the others with Ni/Au finish, were soldered to Ni/Au-finished PCB using Sn-3.0Ag 0.5Cu (SAC305) solder, in a realistic manufacturing setting. The assembled boards were divided into three groups: one without any thermal treatment, one subjected to isothermal aging at 125°C for 30 days, and the third group aged at 125°C for 56 days...

Agilent Technologies, Inc.

Physics of Failure (PoF) Based Lifetime Prediction of Power Electronics at the Printed Circuit Board Level

Technical Library | 2021-09-15 19:00:35.0

This paper presents the use of physics of failure (PoF) methodology to infer fast and accurate lifetime predictions for power electronics at the printed circuit board (PCB) level in early design stages. It is shown that the ability to accurately model silicon–metal layers, semiconductor packaging, printed circuit boards (PCBs), and assemblies allows, for instance, the prediction of solder fatigue failure due to thermal, mechanical, and manufacturing conditions. The technique allows a lifecycle prognosis of the PCB, taking into account the environmental stresses it will encounter during the period of operation. Primarily, it involves converting an electronic computer aided design (eCAD) circuit layout into computational fluid dynamic (CFD) and finite element analysis (FEA) models with accurate geometries. From this, stressors, such as thermal cycling, mechanical shock, natural frequency, and harmonic and random vibrations, are applied to understand PCB degradation, and semiconductor and capacitor wear, and accordingly provide a method for high-fidelity power PCB modelling, which can be subsequently used to facilitate virtual testing and digital twinning for aircraft systems and sub-systems.

Cranfield University

Pb-Free Reflow, PCB Degradation, and the Influence of Moisture Absorption

Technical Library | 2024-09-02 17:31:09.0

The cracking and delamination of printed circuit boards (PCB) during exposure to elevated thermal exposure, such as reflow and rework, have always been a concern for the electronics industry. However, with the increasing spread of Pb-free assembly into industries with lower volume and higher complexity, the occurrence of these events is increasing in frequency. Several telecom and enterprise original equipment manufacturers (OEMs) have reported that the robustness of their PCBs is their number one concern during the transition from SnPb to Pb-free product. Cracking and delamination within PCBs can be cohesive or adhesive in nature and can occur within the weave, along the weave, or at the copper/epoxy interface (see Figure 1). The particular role of moisture absorption and other PCB material properties, such as out of plane expansion on this phenomenon is still being debated.

DfR Solutions (acquired by ANSYS Inc)

  1 2 Next

contract manufacturer of pcb assemblies searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.

Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830

SMTAI 2024 - SMTA International

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Solder Paste Dispensing

Smt Feeder repair service centers in Europe, North, South America
Circuit Board, PCB Assembly & electronics manufacturing service provider

High Precision Fluid Dispensers
PCB Handling with CE

Wave Soldering 101 Training Course
Solder Paste Dispensing

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.