Technical Library | 2024-08-29 18:30:46.0
The mechanical experience of consumption (i.e., feel, softness, and texture) of many foods is intrinsic to their enjoyable consumption, one example being the habit of twisting a sandwich cookie to reveal the cream. Scientifically, sandwich cookies present a paradigmatic model of parallel plate rheometry in which a fluid sample, the cream, is held between two parallel plates, the wafers. When the wafers are counterrotated, the cream deforms, flows, and ultimately fractures, leading to separation of the cookie into two pieces. We introduce Oreology (/Oriːˈɒl@dʒi/), from the Nabisco Oreo for "cookie" and the Greek rheo logia for "flow study," as the study of the flow and fracture of sandwich cookies. Using a laboratory rheometer, we measure failure mechanics of the eponymous Oreo's "creme" and probe the influence of rotation rate, amount of creme, and flavor on the stress–strain curve and postmortem creme distribution. The results typically show adhesive failure, in which nearly all (95%) creme remains on one wafer after failure, and we ascribe this to the production process, as we confirm that the creme-heavy side is uniformly oriented within most of the boxes of Oreos. However, cookies in boxes stored under potentially adverse conditions (higher temperature and humidity) show cohesive failure resulting in the creme dividing between wafer halves after failure. Failure mechanics further classify the creme texture as "mushy." Finally, we introduce and validate the design of an open-source, three-dimensionally printed Oreometer powered by rubber bands and coins for encouraging higher precision home studies to contribute new discoveries to this incipient field of study
Technical Library | 2016-11-10 17:37:35.0
The demand for compute capability is growing rapidly fueling the ever rising consumption of power by data centers the worldwide. This growth in power consumption presents a challenge to data center total cost of ownership. Free-air cooling is one of the industrial trends in reducing power consumption, the power usage effectiveness (PUE) ratio, and the total cost of ownership (TCO). Free-air cooling is a viable approach in many parts of the world where the air is reasonably clean. In Eastern China, the poor quality of air, high in particle and gaseous contamination, is a major obstacle to free-air cooling. Servers exposed to outside air blowing in to data centers will corrode and fail at high rate. The poor reliability of hardware increase TCO dramatically. This paper describes a corrosion resistant server design suitable for reliable operation in a free-air cooling data center located in Eastern China where the indoor air quality can be as poor as ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) severity level G3. An accelerated corrosion test method of verifying hardware reliability in the ASHRAE severity level G3 environment is also described.
Technical Library | 2021-09-08 13:43:56.0
Manganese can be an optimal alloying addition in lead-free SAC (SnAgCu) solder alloys because of its low price and harmless nature. In this research, the mechanical properties of the novel SAC0307 (Sn/Ag0.3/Cu0.7) alloyed with 0.7 wt.% Mn (designated as SAC0307-Mn07) and those of the traditionally used SAC305 (Sn96.5/Ag3/Cu0.5) solder alloys were investigated by analyzing the shear force and Vickers hardness of reflowed solder balls. During the preparation of the reflowed solder balls, different cooling rates were used in the range from 2.7 K/s to 14.7 K/s.
Technical Library | 2013-02-28 17:14:36.0
While it has long been known that the Cu6Sn5 intermetallic that plays a critical role in the reliability of solder joints made with tin-containing alloys on copper substrates exists in two different crystal forms over the temperature range to which electronics circuitry is exposed during assembly and service, it has only recently been recognized that the change from one form to the other has implications for solder joint reliability. (..) In this paper the authors report a study of the effect of cooling rates on Cu6Sn5 crystals. Cooling rates from 200°C ranged from 10°C/minute to 100°C/minute and the effect of isothermal ageing at intermediate temperatures was also studied. The extent of the phase transformation after each regime was determined using synchrotron X-ray diffraction. The findings have important implications for the manufacture of solder joints and their in-service performance... First published in the 2012 IPC APEX EXPO technical conference proceedings....
Technical Library | 2021-07-20 20:12:20.0
Motivation: High reject rates for PCBs due to specification non-conformances Multiple rebuilds causing impactful schedule delays + Copper Wrap + Wicking + Etchback + Annular Ring Are rejected boards reliable? What are PCB quality requirements for? + Reliability: fewer cycles-to-failure? + Manufacturability: define threshold of modern manufacturing capability?
Technical Library | 2024-06-23 21:57:16.0
Two extremes of reflow time scale for copper pillar flip chip solder joints were explored in this study. Sn-2.5Ag solder capped pillars were joined to laminate substrates using either conventional forced convection reflow or the controlled impingement of a defocused infrared laser. The laser reflow joining process was accomplished with an order of magnitude reduction in time above liquidus and a similar increase in solidification cooling rate. The brief reflow time and rapid cooling of a laser impingement reflow necessarily affects all time and temperature dependent phenomena characteristic of reflowed molten solder. These include second phase precipitate dissolution, base metal (copper) dissolution, and the extent of surface wetting. This study examines the reflow dependent microstructural aspects of flip chip Sn-Ag joints on samples of two different size scales, the first with copper pillars of 70μm diameter on 120μm pitch and the second with 23μm diameter pillars on a 40μm pitch. The length scale of Pb-free solder joints is known to affect the Sn grain solidification structure; Sn grain morphology will be noted across both reflow time and joint length scales. Sn grain morphology was further found to be dependent on the extent of surface wetting when such wetting circumvented the copper diffusion barrier layer. Microstructural analysis also will include a comparison of intermetallic structures formed; including the size and number density of second phase Ag3Sn precipitates in the joint and the morphology and thickness of the interfacial intermetallics formed on the pillar and substrate surfaces.
Technical Library | 2017-06-13 17:14:59.0
For tin-rich solder alloys, 200 C (392 F) is an extreme temperature. Intermetallic growth in tin-copper systems is known to occur and is believed to bear a direct relationship to failure mechanisms. This study of morphological changes with time at elevated temperatures was made to determine growth rates of tin-copper intermetallics. Preferred growth directions, rates of thickening, and notable changes in morphology were observed.Each of four tin-base alloys was flowed on copper and exposed to temperatures between 100 C and 200 C for time periods of up to 32 days. Metallographic sections were taken and the intermetallics were examined. Intermetallic layer thickening is characterized by several distinct stages. The initial growth of side plates is extremely rapid and exaggerated. This is followed by retrogression (spheroidization) of the elongated peaks and by general thick-
Technical Library | 2018-12-05 14:52:23.0
The multilayer ceramic capacitor (MLCC) has become a widely used electronics component both for surface mount and embedded PCB applications. The MLCC technologies have gone through a number of material and process changes such as the shift from precious metal electrode (PME) configurations which were predominantly silver/palladium to base metal electrodes (BME) dominated by nickel. Each of these changes were accompanied by both quality and reliability problems. The MLCC industry is now in the midst of an unprecedented set of challenges similar to the Moore’s Law challenges being faced by the semiconductor industry. While capacitor failures have historically been responsible for a significant percentage of product field failures (most estimates are ~30%) we are seeing disturbing developments in the low voltage (
Technical Library | 2008-04-08 17:42:27.0
Concern about the failure of lead-free BGA packages when portable devices such as cell phones are accidentally dropped and a general concern about the resistance of these packages under shock loading has prompted an interest in the impact strength of the soldered BGA connection. This paper reports the results of the measurement of the impact strength of lead-free 0.5±0.01mm diameter BGA spheres on 0.42mm solder mask defined pads on copper/OSP and ENIG substrates using recently developed equipment that can load individual BGA spheres at high strain rates in shear and tension.
Technical Library | 2014-11-18 23:59:30.0
Performance degradation of packaging material is an important reason for the lifetime reduction of LED. In order to understanding the failure behavior of packaging material, silicone and phosphor were chosen to fabricate LED samples within which an aging test at 125℃ was performed. The result of online luminance measurement showed that LED samples with both silicone and phosphor had the highest luminance decay rate among all test samples because the carbonization of silicone and the consequent outgassing reduced the luminance quickly. The result of the luminance variance with test time was analyzed and an exponential decay model was developed with which the lifetime of LED under high temperature could be estimated.