Technical Library | 2024-10-01 14:36:30.0
Discusses the technology and process for laser cutting copper.
Technical Library | 2011-02-17 18:03:21.0
Copper ground pours are created by filling open unused areas with copper generally on the outer layers of the board then connecting the copper fill with stitching vias to ground. Usually, small isolated areas
Technical Library | 2016-03-03 17:25:26.0
This paper discusses a nano copper based paste for use in via filling. The company manufactures nano copper and disperses the coated nano copper into a paste in combination with micron copper. The resultant paste is injected or fills a via. The via is subsequently sintered by means of photonic sintering, or by heat in a reducing environment. The process will be accomplished in under an hour and results in filled solid copper vias.
Technical Library | 2023-05-10 01:39:38.0
DPC (DirectPlatingCopper) thin film process is a method of prepare copper film using magnetron sputtering technology. This process is a process in which the copper target with the target material is placed in a true cavity chamber, and plasma is generated on the copper target surface by magnetron sputtering technology. The ions in the plasma are bombarded on the surface of the target, which is sputtered into fine particles and deposited on the substrate to form a copper film.
Technical Library | 2012-04-26 18:52:37.0
First presented at IPC Apex Expo 2012. The reliability, as tested by thermal cycling, of printed wire boards (PWB) are established by three variables; copper quality, material robustness and design. The copper quality was most influential and could be eva
Technical Library | 2017-11-22 12:38:51.0
The use of copper foils laminated to polyimide (PI) as flexible printed circuit board precursor is a standard practice in the PCB industry. We have previously described[1] an approach to very thin copper laminates of coating uniform layers of nano copper inks and converting them into conductive foils via photonic sintering with a multibulb conveyor system, which is consistent with roll-to-roll manufacturing. The copper thickness of these foils can be augmented by electroplating. Very thin copper layers enable etching fine lines in the flexible circuit. These films must adhere tenaciously to the polyimide substrate.In this paper, we investigate the factors which improve and inhibit adhesion. It was found that the ink composition, photonic sintering conditions, substrate pretreatment, and the inclusion of layers (metal and organic) intermediate between the copper and the polyimide are important.
Technical Library | 2021-02-04 01:56:56.0
In the present study, a model of closed-loop recycling of copper from PCBs is demonstrated, which involves the sequential application of bioleaching and electrowinning to selectively extract copper. This approach is proposed as part of the solution to resolve the challenging ... doi.org/10.1007/s12649-020-01128-9
Technical Library | 2012-10-23 14:25:38.0
Tin-Silver-Copper alloys are the primary choice for lead-free SMT assembly. Although there are other options available such as alloys containing bismuth or indium and other elements, tin-silver-copper solders, also known as SAC alloys are by far the most popular. They are used by approximately 65% of users, as last surveyed by Soldertec in 2003.
Technical Library | 2020-03-12 13:10:35.0
The electronics industry is further progressing in terms of smaller, faster, smarter and more efficient electronic devices. This continuous evolving environment caused the development on various electrolytic copper processes for different applications over the past several decades. (...) This paper describes the reasons for development and a roadmap of dimensions for copper filled through holes, microvias and other copper plated structures on PCBs.
Technical Library | 2015-04-30 20:17:03.0
Higher-speed signal transmission is increasingly required on a printed circuit board to handle massive data in electronic systems. So, signal transmission loss of copper wiring on a printed circuit board has been studied. First, total signal loss was divided into dielectric loss and conductor loss quantitatively based on electromagnetic theory. In particular, the scattering loss due to surface roughness of copper foil has been examined in detail. And the usefulness of the copper foil with low surface roughness has been demonstrated.