Technical Library: copper crack (Page 1 of 1)

PCB Fabrication Processes and Their Effects on Fine Copper Barrel Cracks

Technical Library | 2015-12-23 16:57:27.0

The onset of copper barrel cracks is typically induced by the presence of manufacturing defects. In the absence of discernible manufacturing defects, the causes of copper barrel cracks in printed circuit board (PCB) plated through holes is not well understood. Accordingly, there is a need to determine what affects the onset of barrel cracks and then control those causes to mitigate their initiation.The objective of this research is to conduct a design of experiment (DOE) to determine if there is a relationship between PCB fabrication processes and the prevalence of fine barrel cracks. The test vehicle used will be a 16-layer epoxy-based PCB that has two different sized plated through holes as well as buried vias.

Raytheon

Pad Cratering - The Invisible Threat to the Electronics Industry

Technical Library | 2012-09-06 18:19:37.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. Pad Cratering opens circuits. This occurs when the resin crack (fracture) migrates through a copper trace or via. This happens at assembly, in service or during handling. When com

Integral Technology, Inc

Resin Coated Copper Capacitive (RC3) Nanocomposites for System in a Package (SiP): Development of 3-8-3 structure

Technical Library | 2009-10-08 01:58:04.0

In the present study, we report novel ferroelectric-epoxy based polymer nanocomposites that have the potential to surpass conventional composites to produce thin film capacitors over large surface areas, having high capacitance density and low loss. Specifically, novel crack resistant and easy to handle Resin Coated Copper Capacitive (RC3) nanocomposites capable of providing bulk decoupling capacitance for a conventional power-power core, or for a three layer Voltage-Ground-Voltage type power core, is described.

i3 Electronics

A Study on Effects of Copper Wrap Specifications on Printed Circuit Board Reliability

Technical Library | 2021-07-20 20:02:29.0

During the manufacturing of printed circuit boards (PCBs) for a Flight Project, it was found that a European manufacturer was building its boards to a European standard that had no requirement for copper wrap on the vias. The amount of copper wrap that was measured on coupons from the panel containing the boards of interest was less than the amount specified in IPC-6012 Rev B, Class 3. To help determine the reliability and usability of the boards, three sets of tests and a simulation were run. The test results, along with results of simulation and destructive physical analysis, are presented in this paper. The first experiment involved subjecting coupons from the panels supplied by the European manufacturer to thermal cycling. After 17 000 cycles, the test was stopped with no failures. A second set of accelerated tests involved comparing the thermal fatigue life of test samples made from FR4 and polyimide with varying amounts of copper wrap. Again, the testing did not reveal any failures. The third test involved using interconnect stress test coupons with through-hole vias and blind vias that were subjected to elevated temperatures to accelerate fatigue failures. While there were failures, as expected, the failures were at barrel cracks. In addition to the experiments, this paper also discusses the results of finite-element analysis using simulation software that was used to model plated-through holes under thermal stress using a steady-state analysis, also showing the main failure mode was barrel cracking. The tests show that although copper wrap was sought as a better alternative to butt joints between barrel plating and copper foil layers, manufacturability remains challenging and attempts to meet the requirements often result in features that reduce the reliability of the boards. Experimental and simulation work discussed in this paper indicate that the standard requirements for copper wrap are not contributing to the overall board reliability, although it should be added that a design with a butt joint is going to be a higher risk than a reduced copper wrap design. The study further shows that procurement requirements for wrap plating thickness from Class 3 to Class 2 would pose little risk to reliability (minimum 5 μm/0.197 mil for all via types).Experimental results corroborated by modeling indicate that the stress maxima are internal to the barrels rather than at the wrap location. In fact, the existence of Cu wrap was determined to have no appreciable effect on reliability.

NASA Office Of Safety And Mission Assurance

Numerical Study on New Pin Pull Test for Pad Cratering Of PCB

Technical Library | 2015-02-19 16:54:34.0

Pad cratering is an important failure mode besides crack of solder joint as it’ll pass the regular test but have impact on the long term reliability of the product. A new pin pull test method with solder ball attached and positioning the test board at an angle of 30º is employed to study the strength of pad cratering. This new method clearly reveals the failure mechanism. And a proper way to interpret the finite element analysis (FEA) result is discussed. Impact of pad dimension, width and angle of copper trace on the strength is included. Some findings not included in previous research could help to guide the design for better performance

Flex (Flextronics International)

NSOP Reduction for QFN RFIC Packages

Technical Library | 2017-08-31 13:43:48.0

Wire bonded packages using conventional copper leadframe have been used in industry for quite some time. The growth of portable and wireless products is driving the miniaturization of packages resulting in the development of many types of thin form factor packages and cost effective assembly processes. Proper optimization of wire bond parameters and machine settings are essential for good yields. Wire bond process can generate a variety of defects such as lifted bond, cracked metallization, poor intermetallic etc. NSOP – non-stick on pad is a defect in wire bonding which can affect front end assembly yields. In this condition, the imprint of the bond is left on the bond pad without the wire being attached. NSOP failures are costly as the entire device is rejected if there is one such failure on any bond pad. The paper presents some of the failure modes observed and the efforts to address NSOP reduction

Peregrine Semiconductor

  1  

copper crack searches for Companies, Equipment, Machines, Suppliers & Information

Electronics Equipment Consignment

World's Best Reflow Oven Customizable for Unique Applications
ISVI High Resolution Fast Speed Industrial Cameras

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
High Throughput Reflow Oven

Wave Soldering 101 Training Course
Win Source Online Electronic parts

Software for SMT placement & AOI - Free Download.
Hot selling SMT spare parts and professional SMT machine solutions

Thermal Transfer Materials.