Technical Library | 2020-11-15 21:01:24.0
ENIG, electroless nickel immersion gold is now a well-regarded finish used to enhance and preserve the solder-ability of copper circuits. EPIG, electroless palladium immersion gold, is a new surface finish also for enhancing and preserving solder-ability but with the advantage of eliminating Electroless Nickel from the deposit layer. This feature has become increasingly important with the increasing use of high frequeny PWB designs whereby nickel's magnetic properties are detrimental. We examine these two finishes and their respective soldering characteristics as plated and after steam aging and offer an explanation for the performance deviation.
Technical Library | 2023-02-13 19:23:18.0
Spontaneously forming tin whiskers, which emerge unpredictably from pure tin surfaces, have regained prevalence as a topic within the electronics research community. This has resulted from the ROHS-driven conversion to "lead-free" solderable finish processes. Intrinsic stresses (and/or gradients) in plated films are considered to be a primary driving force behind the growth of tin whiskers. This paper compares the formation of tin whiskers on nanocrystalline and conventional polycrystalline copper deposits. Nanocrystalline copper under-metal deposits were investigated, in terms of their ability to mitigate whisker formation, because of their fine grain size and reduced film stress. Pure tin films were deposited using matte and bright electroplating, electroless plating, and electron beam evaporation. The samples were then subjected to thermal cycling conditions in order to expedite whisker growth. The resultant surface morphologies and whisker formations were evaluated.
Technical Library | 2013-02-08 22:56:47.0
Solder voiding is present in the majority solder joints and is generally accepted when the voids are small and the total void content is minimal. X-ray methods are the predominate method for solder void analysis but this method can be quite subjective for non grid array components due to the two dimensional aspects of X-ray images and software limitations. A novel method of making a copper "sandwich" to simulate under lead and under component environs during reflow has been developed and is discussed in detail. This method has enabled quantitative solder paste void analysis for lead free and specialty paste development and process refinement. Profile and paste storage effects on voiding are discussed. Additionally an optimal design and material selection from a solder void standpoint for a heat spreader on a BCC (Bumpered Chip Carrier) has been developed and is discussed.
Technical Library | 2021-09-08 13:43:56.0
Manganese can be an optimal alloying addition in lead-free SAC (SnAgCu) solder alloys because of its low price and harmless nature. In this research, the mechanical properties of the novel SAC0307 (Sn/Ag0.3/Cu0.7) alloyed with 0.7 wt.% Mn (designated as SAC0307-Mn07) and those of the traditionally used SAC305 (Sn96.5/Ag3/Cu0.5) solder alloys were investigated by analyzing the shear force and Vickers hardness of reflowed solder balls. During the preparation of the reflowed solder balls, different cooling rates were used in the range from 2.7 K/s to 14.7 K/s.
Technical Library | 2018-05-17 11:14:52.0
Intermetallic compound (IMC) growth is being studied in earnest in this past decade because of its significant effect the solder joint reliability. It appears that from numerous investigations conducted, excessive growth of IMC could lead to solder joint failure. Leading to this, many attempts has been made to determine the actual IMC thickness. However, precise and true representation of the growth in the actual 3D phenomenon from 2D cross-section investigations has remained unclear. This paper will focus on the measuring the IMC thickness using 3D surface profilometer (Alicona Focus G4). Lead free solder, Sn3.0Ag0.5Cu (SAC305) was soldered onto copper printed circuit board (Cu PCB). The samples were then subjected to thermal cycle (TC) storage process with temperature range from 0 °C to 100 °C for 200 cycles and up to 1000 cycles were completed.
Technical Library | 2023-08-04 15:27:30.0
A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.
Technical Library | 2013-02-28 17:14:36.0
While it has long been known that the Cu6Sn5 intermetallic that plays a critical role in the reliability of solder joints made with tin-containing alloys on copper substrates exists in two different crystal forms over the temperature range to which electronics circuitry is exposed during assembly and service, it has only recently been recognized that the change from one form to the other has implications for solder joint reliability. (..) In this paper the authors report a study of the effect of cooling rates on Cu6Sn5 crystals. Cooling rates from 200°C ranged from 10°C/minute to 100°C/minute and the effect of isothermal ageing at intermediate temperatures was also studied. The extent of the phase transformation after each regime was determined using synchrotron X-ray diffraction. The findings have important implications for the manufacture of solder joints and their in-service performance... First published in the 2012 IPC APEX EXPO technical conference proceedings....
Technical Library | 2023-11-14 19:52:11.0
The continuous drive in the Electronics industry to build new and innovative products has caused competitive design companies to develop assemblies with consolidated PCB designs, decreased physical sizes, and increased performance characteristics. As a result of these new designs, manufacturers of electronics are forced to contend with many challenges. One of the most significant challenges being the processing of thru-hole components on high thermal mass PCBs having the potential to exceed 20 layers in thicknesses and have copper mass contents of over 40oz. High thermal mass PCBs, coupled with the use of mixed technologies, decreased component spacing, and the change from Tin Lead Solder to Lead Free Alloys has lead many manufacturing facilities to purchase advanced soldering equipment to process challenging assemblies with a high degree of repeatability.
Technical Library | 2016-10-20 18:13:34.0
Pad cratering failure has emerged due to the transition from traditional SnPb to SnAgCu alloys in soldering of printed circuit assemblies. Pb-free-compatible laminate materials in the printed circuit board tend to fracture under ball grid array pads when subjected to high strain mechanical loads. In this study, two Pb-free-compatible laminates were tested, plus one dicycure non-Pb-free-compatible as control. One set of these samples were as-received and another was subjected to five reflows. It is assumed that mechanical properties of different materials have an influence on the susceptibility of laminates to fracture. However, the pad cratering phenomenon occurs at the layer of resin between the exterior copper and the first glass in the weave. Bulk mechanical properties have not been a good indicator of pad crater susceptibility. In this study, mechanical characterization of hardness and Young’s modulus was carried out in the critical area where pad cratering occurs using nano-indentation at the surface and in a cross-section. The measurements show higher modulus and hardness in the Pb-free compatible laminates than in the dicy-cured laminate. Few changes are seen after reflow – which is known to have an effect -- indicating that these properties do not provide a complete prediction. Measurements of the copper pad showed significant material property changes after reflow.
Technical Library | 2021-11-03 17:05:39.0
Additively printed circuits provide advantages in reduced waste, rapid prototyping, and versatile flexible substrate choices relative to conventional circuit printing. Copper (Cu) based inks along with intense pulsed light (IPL) sintering can be used in additive circuit printing. However, IPL sintered Cu typically suffer from poor solderability due to high roughness and porosity. To address this, hybrid Cu ink which consists of Cu precursor/nanoparticle was formulated to seed Cu species and fill voids in the sintered structure. Nickel (Ni) electroplating was utilized to further improve surface solderability. Simulations were performed at various electroplating conditions and Cu cathode surface roughness using the multi-physics finite element method. By utilizing a mask during IPL sintering, conductivity was induced in exposed regions; this was utilized to achieve selective Ni-electroplating. Surface morphology and cross section analysis of the electrodes were observed through scanning electron microscopy and a 3D optical profilometer. Energy dispersive X-ray spectroscopy analysis was conducted to investigate changes in surface compositions. ASTM D3359 adhesion testing was performed to examine the adhesion between the electrode and substrate. Solder-electrode shear tests were investigated with a tensile tester to observe the shear strength between solder and electrodes. By utilizing Cu precursors and novel multifaceted approach of IPL sintering, a robust and solderable Ni electroplated conductive Cu printed electrode was achieved.