Technical Library: copper oxide hydro (Page 1 of 1)

A Designed Experiment for the Influence of Copper Foils on Impedance, DC Line Resistance and Insertion Loss

Technical Library | 2013-03-28 16:18:22.0

For the last couple of years, the main concerns regarding the electrical performance of blank PCB boards were impedance and ohmic resistance. Just recently, the need to reduce insertion loss came up in discussions with blank board customers (...) The paper describes the test vehicle and the testing methodology and discusses in detail the electrical performance characteristics. The influence of the independent variables on the performance characteristics is presented. Finally the thermal reliability of the boards built applying different copper foils and oxide replacements was investigated.

Multek Inc.

Wettable-Flanks: Enabler for the Use of Bottom-Termination Components in Mass Production of High-Reliability Electronic Control Units

Technical Library | 2018-05-23 12:12:43.0

Driven by miniaturization, cost reduction and tighter requirements for electrical and thermal performance, the use of lead-frame based bottom-termination components (LF-BTC) as small-outline no-leads (SON), quad-flat no leads (QFN) packages etc., is increasing. However, a major distractor for the use of such packages in high-reliability applications has been the lack of a visible solder (toe) fillet on the edge surface of the pins: because the post-package assembly singulation process typically leaves bare copper leadframe at the singulation edge, which is not protected against oxidation and thus does not easily solder-wet, a solder fillet (toe fillet) does not generally develop.

Robert Bosch LLC Automotive Electronics Division

Copper Wire Bond Failure Mechanisms.

Technical Library | 2014-07-24 16:26:34.0

Wire bonding a die to a package has traditionally been performed using either aluminum or gold wire. Gold wire provides the ability to use a ball and stitch process. This technique provides more control over loop height and bond placement. The drawback has been the increasing cost of the gold wire. Lower cost Al wire has been used for wedge-wedge bonds but these are not as versatile for complex package assembly. The use of copper wire for ball-stitch bonding has been proposed and recently implemented in high volume to solve the cost issues with gold. As one would expect, bonding with copper is not as forgiving as with gold mainly due to oxide growth and hardness differences. This paper will examine the common failure mechanisms that one might experience when implementing this new technology.

DfR Solutions (acquired by ANSYS Inc)

Potential for Multi-Functional Additive Manufacturing Using Pulsed Photonic Sintering

Technical Library | 2021-11-03 16:52:47.0

This paper proposes the integration of pulsed photonic sintering into multi-material additive manufacturing processes in order to produce multifunctional components that would be nearly impossible to produce any other way. Pulsed photonic curing uses high power Xenon flash lamps to thermally fuse printed nanomaterials such as conductive metal inks. To determine the feasibility of the proposed integration, three different polymer additive manufacturing materials were exposed to typical flash curing conditions using a Novacentrix Pulseforge 3300 system. FTIR analysis revealed virtually no change in the polymer substrates, thus indicating that the curing energy did not damage the polymer. Next, copper traces were printed on the same substrate, dried, and photonically cured to establish the feasibility of thermally fusing copper metal on the polymer additive manufacturing substrates. Although drying defects were observed, electrical resistivity values ranging from 0.081 to 0.103 Ω/sq. indicated that high temperature and easily oxidized metals can be successfully printed and cured on several commonly used polymer additive manufacturing materials. These results indicate that pulsed photonic curing holds tremendous promise as an enabling technology for next generation multimaterial additive manufacturing processes.

Rochester Institute of Technology

  1  

copper oxide hydro searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Reflow Soldering 101 Training Course
2024 Eptac IPC Certification Training Schedule

Stencil Printing 101 Training Course
Win Source Online Electronic parts

World's Best Reflow Oven Customizable for Unique Applications