Technical Library: copper pad design (Page 2 of 7)

PCB Design Optimization of 0201 Packages for Assembly Processes

Technical Library | 2023-05-02 19:03:34.0

The demand for 0201 components in consumer products will increase sharply over the next few years due to the need for miniaturization. It is predicted that over 20 billion 0201 components will be used in more than one billion cell phones worldwide by the year 2003. Therefore, research and development on 0201 assembly is becoming a very hot topic. The first step to achieve a successful assembly process is to obtain a good PCB design for 0201 packages. This paper presents the data and criteria of PCB design for 0201 packages, including the pad design for 0201 components, and the minimum pad spacing or component clearance between 0201 components or between 0201 and other components. A systematic study on pad design and pad spacing was undertaken, using two test vehicles and three Design of Experiments (DOEs). In the first DOE, 2 out of 18 types of 0201 pad designs were selected based on process yield. The second DOE was focused on pad spacing, including 10mil, 8mil, 6mil and 4mil. The third experiment was final optimization, using two types of optimized pad designs with 10mil, 8mil and 6mil pad spacing. Through the above experiments, the design guideline for PCB layout for 0201 packages and the assembly process capability are identified.

Flextronics International

Design and Construction Affects on PWB Reliability

Technical Library | 2012-04-26 18:52:37.0

First presented at IPC Apex Expo 2012. The reliability, as tested by thermal cycling, of printed wire boards (PWB) are established by three variables; copper quality, material robustness and design. The copper quality was most influential and could be eva

PWB Interconnect Solutions Inc.

Pad Cratering - The Invisible Threat to the Electronics Industry

Technical Library | 2012-09-06 18:19:37.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. Pad Cratering opens circuits. This occurs when the resin crack (fracture) migrates through a copper trace or via. This happens at assembly, in service or during handling. When com

Integral Technology, Inc

Board Design and Assembly Process Evaluation for 0201 Components on PCBs

Technical Library | 2023-05-02 19:06:43.0

As 0402 has become a common package for printed circuit board (PCB) assembly, research and development on mounting 0201 components is emerging as an important topic in the field of surface mount technology for PWB miniaturization. In this study, a test vehicle for 0201 packages was designed to investigate board design and assembly issues. Design of Experiment (DOE) was utilized, using the test vehicle, to explore the influence of key parameters in pad design, printing, pick-andplace, and reflow on the assembly process. These key parameters include printing parameters, mounting height or placement pressure, reflow ramping rate, soak time and peak temperature. The pad designs consist of rectangular pad shape, round pad shape and home-based pad shape. For each pad design, several different aperture openings on the stencil were included. The performance parameters from this experiment include solder paste height, solder paste volume and the number of post-reflow defects. By analyzing the DOE results, optimized pad designs and assembly process parameters were determined.

Flextronics International

Analysis of Laminate Material Properties for Correlation to Pad Cratering

Technical Library | 2016-10-20 18:13:34.0

Pad cratering failure has emerged due to the transition from traditional SnPb to SnAgCu alloys in soldering of printed circuit assemblies. Pb-free-compatible laminate materials in the printed circuit board tend to fracture under ball grid array pads when subjected to high strain mechanical loads. In this study, two Pb-free-compatible laminates were tested, plus one dicycure non-Pb-free-compatible as control. One set of these samples were as-received and another was subjected to five reflows. It is assumed that mechanical properties of different materials have an influence on the susceptibility of laminates to fracture. However, the pad cratering phenomenon occurs at the layer of resin between the exterior copper and the first glass in the weave. Bulk mechanical properties have not been a good indicator of pad crater susceptibility. In this study, mechanical characterization of hardness and Young’s modulus was carried out in the critical area where pad cratering occurs using nano-indentation at the surface and in a cross-section. The measurements show higher modulus and hardness in the Pb-free compatible laminates than in the dicy-cured laminate. Few changes are seen after reflow – which is known to have an effect -- indicating that these properties do not provide a complete prediction. Measurements of the copper pad showed significant material property changes after reflow.

CALCE Center for Advanced Life Cycle Engineering

Strategies for Designing Microwave Multilayer Printed Circuit Boards Using Stripline Structures

Technical Library | 2010-06-03 22:23:03.0

Strategies for successful design and manufacture of microwave multilayer printed circuit boards. All aspects from pad registration, dimensional stability, impedance fluctuation, fusion bonding, thermal ageing, z-axis expansion, reliability, to Young's mod

Taconic

Assessing the Effectiveness of I/O Stencil Aperture Modifications on BTC Void Reduction

Technical Library | 2018-09-26 20:33:26.0

Bottom terminated components, or BTCs, have been rapidly incorporated into PCB designs because of their low cost, small footprint and overall reliability. The combination of leadless terminations with underside ground/thermal pads have presented a multitude of challenges to PCB assemblers, including tilting, poor solder fillet formation, difficult inspection and – most notably – center pad voiding. Voids in large SMT solder joints can be difficult to predict and control due to the variety of input variables that can influence their formation. Solder paste chemistries, PCB final finishes, and reflow profiles and atmospheres have all been scrutinized, and their effects well documented. Additionally, many of the published center pad voiding studies have focused on optimizing center pad footprint and stencil aperture designs. This study focuses on I/O pad stencil modifications rather than center pad modifications. It shows a no-cost, easily implemented I/O design guideline that can be deployed to consistently and repeatedly reduce void formation on BTC-style packages.

AIM Solder

NSOP Reduction for QFN RFIC Packages

Technical Library | 2017-08-31 13:43:48.0

Wire bonded packages using conventional copper leadframe have been used in industry for quite some time. The growth of portable and wireless products is driving the miniaturization of packages resulting in the development of many types of thin form factor packages and cost effective assembly processes. Proper optimization of wire bond parameters and machine settings are essential for good yields. Wire bond process can generate a variety of defects such as lifted bond, cracked metallization, poor intermetallic etc. NSOP – non-stick on pad is a defect in wire bonding which can affect front end assembly yields. In this condition, the imprint of the bond is left on the bond pad without the wire being attached. NSOP failures are costly as the entire device is rejected if there is one such failure on any bond pad. The paper presents some of the failure modes observed and the efforts to address NSOP reduction

Peregrine Semiconductor

Influence of Plating Quality on Reliability of Microvias

Technical Library | 2016-05-12 16:29:40.0

Advances in miniaturized electronic devices have led to the evolution of microvias in high density interconnect (HDI) circuit boards from single-level to stacked structures that intersect multiple HDI layers. Stacked microvias are usually filled with electroplated copper. Challenges for fabricating reliable microvias include creating strong interface between the base of the microvia and the target pad, and generating no voids in the electrodeposited copper structures. Interface delamination is the most common microvia failure due to inferior quality of electroless copper, while microvia fatigue life can be reduced by over 90% as a result of large voids, according to the authors’ finite element analysis and fatigue life prediction. This paper addresses the influence of voids on reliability of microvias, as well as the interface delamination issue.

CALCE Center for Advanced Life Cycle Engineering

Advanced Cu Electroplating Process for Any Layer Via Fill Applications with Thin Surface Copper

Technical Library | 2019-06-26 23:21:49.0

Copper-filled micro-vias are a key technology in high density interconnect (HDI) designs that have enabled increasing miniaturization and densification of printed circuit boards for the next generation of electronic products. Compared with standard plated through holes (PTHs) copper filled vias provide greater design flexibility, improved signal performance, and can potentially help reduce layer count, thus reducing cost. Considering these advantages, there are strong incentives to optimize the via filling process. This paper presents an innovative DC acid copper via fill formulation, for VCP (Vertical Continues Plating) applications which rapidly fills vias while minimizing surface plating.

MacDermid Inc.


copper pad design searches for Companies, Equipment, Machines, Suppliers & Information

Void Free Reflow Soldering

World's Best Reflow Oven Customizable for Unique Applications
Online Equipment Auction of Altronic: Small-Batch Surface Mount & Assembly Facility

High Precision Fluid Dispensers
Best SMT Reflow Oven

High Throughput Reflow Oven
Assembly Automation Technology

"Heller Korea"