Technical Library | 2018-09-21 10:12:53.0
Moisture accumulates during storage and industry practice recommends specific levels of baking to avoid delamination. This paper will discuss the use of capacitance measurements to follow the absorption and desorption behaviour of moisture. The PCB design used in this work, focused on the issue of baking out moisture trapped between copper planes. The PCB was designed with different densities of plated through holes and drilled holes in external copper planes, with capacitance sensors located on the inner layers. For trapped volumes between copper planes, the distance between holes proved to be critical in affecting the desorption rate. For fully saturated PCBs, the desorption time at elevated temperatures was observed to be in the order of hundreds of hours. Finite difference diffusion modelling was carried out for moisture desorption behaviour for plated through holes and drilled holes in copper planes. A meshed copper plane was also modelled evaluating its effectiveness for assisting moisture removal and decreasing bake times. Results also showed, that in certain circumstances, regions of the PCB under copper planes initially increase in moisture during baking.
Technical Library | 2024-10-26 06:26:24.0
Copper pour is an essential design element in printed circuit boards (PCBs) that enhances thermal management, signal integrity, and electrical grounding. It involves filling unused areas on the board with copper, connecting them to power or ground planes. This feature helps manage heat dissipation, minimizes electromagnetic interference (EMI), and provides stable electrical grounding for complex circuits. While copper pour offers significant benefits, improper implementation may lead to manufacturing challenges like warping or soldering difficulties. This article explores the advantages of copper pour, the potential challenges, and how PCB Power integrates this design feature to optimize performance and durability. With advanced manufacturing processes, PCB Power ensures seamless copper pour integration for prototypes and large-scale production, offering turnkey PCB solutions for various industries.
Technical Library | 2024-09-02 17:31:09.0
The cracking and delamination of printed circuit boards (PCB) during exposure to elevated thermal exposure, such as reflow and rework, have always been a concern for the electronics industry. However, with the increasing spread of Pb-free assembly into industries with lower volume and higher complexity, the occurrence of these events is increasing in frequency. Several telecom and enterprise original equipment manufacturers (OEMs) have reported that the robustness of their PCBs is their number one concern during the transition from SnPb to Pb-free product. Cracking and delamination within PCBs can be cohesive or adhesive in nature and can occur within the weave, along the weave, or at the copper/epoxy interface (see Figure 1). The particular role of moisture absorption and other PCB material properties, such as out of plane expansion on this phenomenon is still being debated.
1 |