Technical Library | 2021-04-08 00:36:50.0
Understand the sensitivities of the identified factors to Creep Corrosion. Correlate experimental test conditions to environment classification standards.
Technical Library | 2008-05-28 18:41:53.0
This paper describes correlation between a true 2D area measurement (e.g. printer) and a height map generated area from a SPI system. In addition, this paper will explore the correlation between area/volume measurements and bridge detection between 2D/3D techniques. The ultimate goal is to arm the process engineers with information that can be used to make decision that will impact defects, cost, throughput and Return On Investment.
Technical Library | 2022-10-31 17:30:40.0
This paper presents a quantitative analysis of solder joint reliability data for lead-free Sn-Ag-Cu (SAC) and mixed assembly (SnPb + SAC) circuit boards based on an extensive, but non-exhaustive, collection of thermal cycling test results. The assembled database covers life test results under multiple test conditions and for a variety of components: conventional SMT (LCCCs, resistors), Ball Grid Arrays, Chip Scale Packages (CSPs), wafer-level CSPs, and flip-chip assemblies with and without underfill. First-order life correlations are developed for SAC assemblies under thermal cycling conditions. The results of this analysis are put in perspective with the correlation of life test results for SnPb control assemblies. Fatigue life correlations show different slopes for SAC versus SnPb assemblies, suggesting opposite reliability trends under low or high stress conditions. The paper also presents an analysis of the effect of Pb contamination and board finish on lead-free solder joint reliability. Last, test data are presented to compare the life of mixed solder assemblies to that of standard SnPb assemblies for a wide variety of area-array components. The trend analysis compares the life of area-array assemblies with: 1) SAC balls and SAC or SnPb paste; 2) SnPb balls assembled with SAC or SnPb paste.
Technical Library | 2008-03-13 13:02:50.0
Three full-field optical techniques, shadow moiré, fringe projection and digital image correlation (DIC), are used to measure temperature-dependent warpage for a PBGA package and a PCB component land site from room temperature to 250ºC. The results are qualitatively similar, but imaging resolution and noise properties create offsets between coplanarity values. The paper summarizes strengths and weaknesses for each technique.
Technical Library | 2024-07-24 01:27:58.0
A study of the Thermo Design PCB Indicates The better the performance of the heatsink (=low Rth), the more influence the TIMs have The thickness of a TIM is often more critical than the thermal conductivity of the material The thermal resistance of the surface between the materials are most critical Better use many small vias than a few big vias! Plated or filled vias are very expensive to get, better try to stay with standard!
Technical Library | 2021-07-27 14:57:18.0
It should be noted that this is an overview paper that represents the early stages of an ongoing investigation into the causes and effects between conductive anodic filament (CAF) formation and printed wiring board (PWB) material damage. Our belief is that certain or specific types of material damage can increase the propensity for CAF formation. The preliminary data collected suggests is that there is no statistical correlation between the general definition of material damage (cohesive failure) and CAF. The resulting dichotomy is that we find no CAF failures in some coupons that have obvious material damage and we find CAF failures in coupons that don't exhibit material damage.
Technical Library | 2009-05-07 23:23:00.0
Thermal fatigue has been one of the most serious problems for solder joint reliability. Thermo-mechanical fatigue failure is considered to be closely related to micro-structural coarsening (grain/phase growth). Factors that influence the phase growth are studied and measurement methods are discussed, including the preparation of the eutectic solder sample for phase size measurement. Three categories of models used to predict grain growth in polycrystalline materials are presented. Finally, phase growth in solder during high temperature aging and temperature cycling and its use as a damage correlation factor are discussed.
Technical Library | 2012-12-14 14:28:20.0
This paper examines the potential failure mechanisms that can damage modern lowvoltage CMOS devices and their relationship to electrical testing. Failure mechanisms such as electrostatic discharge (ESD), CMOS latch-up, and transistor gate oxide degradation can occur as a result of electrical over-voltage stress (EOS). In this paper, EOS due to electrical testing is examined and an experiment is conducted using pulsed voltage waveforms corresponding to conditions encountered during in-circuit electrical testing. Experimental results indicate a correlation between amplitude and duration of the pulse waveform and device degradation due to one or more of the failure mechanisms.
Technical Library | 2013-08-22 14:28:58.0
Tin-rich solders are widely applied in the electronic industry in the majority of modern printed circuit boards (PCBs). Because the use of lead-tin solders has been banned in the European Union since 2006, the problem of the bridging of adjacent conductors due to tin whisker growth (limited before by the addition of Pb) has been reborn. In this study tin alloys soldered on glass-epoxy laminate (typically used for PCBs) are considered. Scanning ion microscopy with Focused Ion Beam (FIB) system and energy-dispersive X-ray spectroscopy (EDXS) were used to determine correlations between spatial non-uniformities of the glass-epoxy laminate, the distribution of intermetallic compounds and whisker growth.
Technical Library | 2015-04-02 20:12:58.0
The demands on volume delivery and positioning accuracy for solder paste deposits are increasing as the size and complexity of circuits continue to develop in the electronics industry. According to the iNEMI 2013 placement accuracy for these kinds of components will reach 6 sigma placement accuracy in X and Y of 30 um by 2023.This study attempts to understand the dependencies on piezo actuation pulse profile on jetting deposit quality, especially focused on positioning, satellites and shape. The correlation of deposit diameter and positioning deviation as a function of piezo actuation profile shows that positioning error for deposits increase almost monotonically with decreasing droplet volume irrespective of the piezo-actuation profile. The trends for shape and satellite levels are not as clear and demand further study.