Technical Library: crack solder joints connector (Page 1 of 1)

Underfill Dispensing For Aerospace Military And Defense

Technical Library | 2023-08-16 18:20:44.0

One of our defense customers planned to dispense underfill material for small and large die, using Hysol FP4545FC epoxy encapsulant. This process dissipates stress on solder joints and prevents cracking and fracturing between the bottom of the die and the surface of the substrate.

GPD Global

Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints

Technical Library | 2014-06-19 18:13:23.0

For high-density electronic packaging,the application of flip-chip solder joints has been well received in the microelectronics industry. High-lead(Pb) solders such as Sn5Pb95 are presently granted immunity from the RoHS requirements for their use in high-end flip-chip devices, especially in military applications. In flip-chip technology for consumer electronic products, organic substrates have replaced ceramic substrates due to the demand for less weight and low cost. However, the liquidus temperatures of high-Pb solders are over 300°C which would damage organic substrates during reflow because of the low glass transition temperature. To overcome this difficulty, the composite solder approach was developed...

National Chiao Tung University

Cracks: The Hidden Defect

Technical Library | 2019-08-15 13:31:52.0

Cracks in ceramic chip capacitors can be introduced at any process step during surface mount assembly. Thermal shock has become a "pat" answer for all of these cracks, but about 75 to 80% originate from other sources. These sources include pick and place machine centering jaws, vacuum pick up bit, board depanelization, unwarping boards after soldering, test fixtures, connector insulation, final assembly, as well as defective components. Each source has a unique signature in the type of crack that it develops so that each can be identified as the source of error.

AVX Corporation

PCB Surface Finishes: A General Review

Technical Library | 2015-06-22 16:39:47.0

Surface finishing is an integral part of any PCB fabrication. It is generally applied to exposed Cu connectors and conductors on the board. Surface finishing has numerous important functions. It serves as a protective layer for the Cu connectors during storage. The surface finish helps minimize or reduce tarnish of the Cu substrate. Additionally, since it is the layer that comes into contact with other components during assembly, it ensures good solderability between the PCB and the component during assembly. Furthermore after assembly, the finish helps prolong the integrity of the solder joint during use. A general review of common PCB surface finishes is presented. The advantages and disadvantages of each are discussed and compared.

MacDermid Inc.

Fatigue Damage Behavior of a Surface-mount Electronic Package Under Different Cyclic Applied Loads.

Technical Library | 2014-07-10 17:37:18.0

This paper studies and compares the effects of pull–pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package.The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

Tsinghua University

Effect Of Voids On Thermo-Mechanical Reliability of Solder Joints

Technical Library | 2019-10-16 23:18:15.0

Despite being a continuous subject of discussion, the existence of voids and their effect on solder joint reliability has always been controversial. In this work we revisit previous works on the various types of voids, their origins and their effect on thermo-mechanical properties of solder joints. We focus on macro voids, intermetallics micro voids, and shrinkage voids, which result from solder paste and alloy characteristics. We compare results from the literature to our own experimental data, and use fatigue-crack initiation and propagation theory to support our findings. Through a series of examples, we show that size and location of macro voids are not the primary factor affecting solder joint mechanical and thermal fatigue life. Indeed, we observe that when these voids area conforms to the IPC-A-610 (D or F) or IPC-7095A standards, macro voids do not have any significant effect on thermal cycling or drop shock performance.

Alpha Assembly Solutions

Numerical Study on New Pin Pull Test for Pad Cratering Of PCB

Technical Library | 2015-02-19 16:54:34.0

Pad cratering is an important failure mode besides crack of solder joint as it’ll pass the regular test but have impact on the long term reliability of the product. A new pin pull test method with solder ball attached and positioning the test board at an angle of 30º is employed to study the strength of pad cratering. This new method clearly reveals the failure mechanism. And a proper way to interpret the finite element analysis (FEA) result is discussed. Impact of pad dimension, width and angle of copper trace on the strength is included. Some findings not included in previous research could help to guide the design for better performance

Flex (Flextronics International)

Solder Joint Reliability Under Realistic Service Conditions

Technical Library | 2014-10-30 01:48:43.0

The ultimate life of a microelectronics component is often limited by failure of a solder joint due to crack growth through the laminate under a contact pad (cratering), through the intermetallic bond to the pad, or through the solder itself. Whatever the failure mode proper assessments or even relative comparisons of life in service are not possible based on accelerated testing with fixed amplitudes, or random vibration testing, alone. Effects of thermal cycling enhanced precipitate coarsening on the deformation properties can be accounted for by microstructurally adaptive constitutive relations, but separate effects on the rate of recrystallization lead to a break-down in common damage accumulation laws such as Miner's rule. Isothermal cycling of individual solder joints revealed additional effects of amplitude variations on the deformation properties that cannot currently be accounted for directly. We propose a practical modification to Miner's rule for solder failure to circumvent this problem. Testing of individual solder pads, eliminating effects of the solder properties, still showed variations in cycling amplitude to systematically reduce subsequent acceleration factors for solder pad cratering. General trends, anticipated consequences and remaining research needs are discussed

Universal Instruments Corporation

Solving the ENIG Black Pad Problem: An ITRI Report on Round 2

Technical Library | 2013-01-17 15:37:21.0

A problem exists with electroless nickel / immersion gold (ENIG) surface finish on some pads, on some boards, that causes the solder joint to separate from the nickel surface, causing an open. The solder has wet and dissolved the gold. A weak tin to nickel intermetallic bond initially occurs, but the intermetallic bond cracks and separates when put under stress. Since the electroless nickel / immersion gold finish performs satisfactory in most applications, there had to be some area within the current chemistry process window that was satisfactory. The problem has been described as a 'BGA Black Pad Problem' or by HP as an 'Interfacial Fracture of BGA Packages…'[1]. A 24 variable experiment using three different chemistries was conducted during the ITRI (Interconnect Technology Research Institute) ENIG Project, Round 1, to investigate what process parameters of the chemical matrix were potentially satisfactory to use and which process parameters of the chemical matrix need to be avoided. The ITRI ENIG Project has completed Round 1 of testing and is now in the process of Round 2 TV (Test Vehicle) build.

Celestica Corporation

  1  

crack solder joints connector searches for Companies, Equipment, Machines, Suppliers & Information