Technical Library: cycle time (Page 1 of 3)

Case study: Precise Coating on Electronic Hearing Devices

Technical Library | 2024-06-20 22:53:23.0

A leading electronic hearing device manufacturer reduced UV precise coating cycle time by 79% with advanced automation. A manual process of hand brushing UV coating onto components was replaced by an automated solution from Nordson to increase production volumes, improve quality, and reduce costs for this complex application. Download the paper to learn the details of the application.

ASYMTEK Products | Nordson Electronics Solutions

Throughput vs. Wet-Out Area Study for Package on Package (PoP) Underfill Dispensing

Technical Library | 2012-12-17 22:05:22.0

Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.

ASYMTEK Products | Nordson Electronics Solutions

Inline Quality Control and Position Detection in Dispensing Systems

Technical Library | 2024-02-06 14:36:04.0

Quality monitoring for verifiable, high-precision application of adhesives and sealants now begins with detecting the position of the component. Dispensing systems are in continuous use and have to work with 100 percent accuracy. And this level of accuracy must be verifiable. Demands on electronic components continue to escalate as these components also need to operate continuously and flawlessly, especially in the automotive and medical sectors. At the same time, there is increasing pressure to automate as companies are looking to achieve the shortest possible cycle times and maximum output.

Scheugenpflug Inc.

Potting-optimized component design

Technical Library | 2023-02-15 16:00:16.0

With regard to potting, the design of electronic assemblies and components has a significant impact on economical and sustainable production. Key aspects in this respect are pottability, material use, cycle times, quality and the process technology needed. Optimized, bubble-free potting contributes greatly to the function and longevity of products. It is best practice during the design and development phases therefore to follow the potting tips contained in this White Paper.

Scheugenpflug Inc.

Selective Soldering: A need for Innovation and Development

Technical Library | 2023-12-18 21:07:29.0

Selective soldering utilises a nozzle to apply solder to components on the underside of printed circuit boards (PCBs). This nozzle can be moved to either perform dips (depositing solder to a single component) or draws (applying solder to several components in a single movement). The selective soldering methodology thereby allows the process to be tailored to specific joints and allows multiple nozzle types to be used if required on the circuit board. Nozzles can vary by size (internal diameter) and shape (making them suitable for different process types). This is all dictated by board design and process requirements. Selection of the nozzle type is dependent upon the product to be soldered and the desired cycle time. Examples of different nozzle types are shown here. Hand-load selective systems must be programmed with the parameters for multiple solder joints. However, many in-line systems are designed to be modular. This modularity allows for multiple solder stations with different conditions/nozzles to achieve low cycle times. Figure 1 shows the two distinct types of selective soldering systems offered by Pillarhouse International Ltd.

Pillarhouse International Ltd.

Optical Bonding

Technical Library | 2019-01-10 10:24:47.0

We notice that the quantities of material that are to be dosed are becoming more and more divergent. In addition to large media volumes, small and very small quantities are also increasingly coming into focus. For example autonomous driving: These vehicles already produce an immense amount of data today. When potting the associated sensors, cameras, and ECUs, it is important to ensure a precise and repeatable media application – even with volumes of only 0.03 ml. In contrast, when high-voltage batteries for electric cars are potted, 5 to 10 litres of heat-conducting paste are required per vehicle – and the trend is rising. Optical bonding used in display production, on the other hand, is in the medium volume range. The challenge now is to cover the entire volume spectrum reliably and in compliance with the required cycle times. This is remedied by a modular system of scalable modules, which offers the customer the necessary flexibility and enables him to plan a system according to his needs.

Scheugenpflug Inc.

IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments

Technical Library | 2020-03-04 23:53:17.0

Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

SLAS Technology

Selective soldering in an optimized nitrogen atmosphere

Technical Library | 2021-09-29 13:35:21.0

In PCB circuit assemblies the trend is moving to more SMD components with finer pitch connections. The majority of the assemblies still have a small amount of through hole (THT) components. Some of them can't withstand high reflow temperatures, while others are there because of their mechanical robustness. In automotive applications these THT components are also present. Many products for cars, including steering units, radio and navigation, and air compressors also use THT technology to connect board-to-board, PCB's to metal shields or housings out of plastic or even aluminium. This is not a simple 2D plain soldering technology, as it requires handling, efficient thermal heating and handling of heavy (up to 10 kg) parts. Soldering technology becomes more 3D where connections have to be made on different levels. For this technology robots using solder wire fail because of the spattering of the flux in the wires and the long cycle time. In wave soldering using pallets the wave height is limited and pin in paste reflow is only a 2D application with space limitations. Selective soldering using dedicated plates with nozzles on the solder area is the preferred way to make these connections. All joints can be soldered in one dip resulting in short cycle times. Additional soldering on a small select nozzle can make the system even more flexible. The soldering can only be successful when there is enough thermal heat in the assembly before the solder touches the board. A forced convection preheat is a must for many applications to bring enough heat into the metal and board materials. The challenge in a dip soldering process is to get a sufficient hole fill without bridging and minimize the number of solder balls. A new cover was designed to improve the nitrogen environment. Reducing oxygen levels benefits the wetting, but increases the risk for solder balling. Previous investigations showed that solder balling can be minimized by selecting proper materials for solder resist and flux.

Vitronics Soltec

Tau White Paper

Technical Library | 2001-04-24 10:47:02.0

Board-level circuits today routinely run at speeds of 100 MHz or more and are composed of dozens of complex interacting VLSI components. To design such circuits in a timely and correct manner it is necessary to pay close attention to circuit timing early in the design cycle. At fast clock speeds, managing component and interconnect propagation delay becomes a key aspect of circuit design. It is imperative that the critical paths on a circuit and the slack available for interconnect delay consumption be identified early, and drive subsequent stages in the design flow.

Mentor Graphics

Maximal Performance Through Vacuum Potting

Technical Library | 2021-07-28 18:35:13.0

The performance of electronic components is compromised by factors such as bubbles in the potting medium. Increasing numbers of applications – particularly in the automotive and electronics industries – therefore require completely bubble-free dispensing methods. This is where potting in a vacuum comes into focus. The widespread school of thought about this technology is that it is too complicated, too expensive and too slow. But a closer look shows that this view is incorrect. This is a mastered technology. As for costs, the calculation basis is key, since usually the potting and vacuum method is only considered after the required potting quality cannot be achieved reliably any other way. Under total cost of ownership assessments, higher system costs no longer play a key role, since component failure would result in much higher subsequent costs. And now there are proven solutions for high production volumes and/or shorter cycle times. This whitepaper explains when potting in a vacuum is ideal for your projects and what to be aware of.

Scheugenpflug Inc.

  1 2 3 Next

cycle time searches for Companies, Equipment, Machines, Suppliers & Information

Blackfox IPC Training & Certification

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
High Throughput Reflow Oven

Wave Soldering 101 Training Course
Win Source Online Electronic parts

Software for SMT placement & AOI - Free Download.
Hot selling SMT spare parts and professional SMT machine solutions

Private label coffee for your company - your logo & message on each bag!