Technical Library: damping (Page 1 of 1)

Interconnect Reliability Correlation with System Design and Transportation Stress

Technical Library | 2020-10-18 19:35:05.0

Interconnect reliability especially in BGA solder joints and compliant pins are subjected to design parameters which are very critical to ensure product performance at pre-defined shipping condition and user environment. Plating thickness of compliant pin and damping mechanism of electronic system design are key successful factors for this purpose. In additional transportation and material handling process of a computer server system will be affected by shock under certain conditions. Many accessories devices in the server computer system tend to become loose resulting in poor contact or solder intermittent interconnect problems due to the shock load from the transportation and material handling processes.

MiTAC International Corporation

Durable Conductive Inks and SMD Attachment for Robust Printed Electronics

Technical Library | 2018-10-24 18:04:12.0

Polymer Thick Film (PTF)-based printed electronics (aka Printed Electronics) has improved in durability over the last few decades and is now a proven alternative to copper circuitry in many applications once thought beyond the capability of PTF circuitry. This paper describes peak performance and areas for future improvement.State-of-the-art PTF circuitry performance includes the ability to withstand sharp crease tests, 85C/85%RH damp heat 5VDC bias aging (silver migration), auto seat durability cycling, SMT mandrel flexing, and others. The IPC/SGIA subcommittee for Standards Tests development has adopted several ASTM test methods for PTF circuitry and is actively developing needed improvements or additions. These standards are described herein. Advantages of PTF circuitry over copper include: varied conductive material compositions, lower cost and lower environmental impact. Necessary improvements include: robust integration of chip and power, higher conductivity, and fine line multi-layer patterning.

Engineered Materials Systems, Inc.

Noise Fault Detection of High Low Temperature Test Chamber(Climatic chamber)

Technical Library | 2019-04-11 06:04:49.0

With the development of science and technology, the climatic chamber quality has been improved, and the failure rate is reduced, but there still have the failure probability.today we introduce what are the mian factors for big noise high low temperature test chamber: 1.External factors: the bottom angle is uneven, the ground is uneven, adjust the bottom angle, ensure the equipment is in a horizontal position; 2.The equipment is touched other objects or pushed against the wall,pls remove the objects and keep a certain distance from the wall. 3.Compressor noise:check whether the compressor collides with the pipeline,and evaporator dish is loose or not. 4.Check whether compressor shock absorbers are aging and replace them. 5.Solenoid valve noise: solenoid valve reversing caue loud sound, pls add damping glue, if no effect, need to replace solenoid valve. If there is AC noise, need to replace the power board. 6.Check wether the fan or the fan string shaft make noise,whether the fan blades are touched and deformed, whether the fan is fixed or not, pls adjust accordingly or add the rubber pad. If further technical questions,contact us without hesitation!---Climtest Symor® technical team

Symor Instrument Equipment Co.,Ltd

ADVANCED BORON NITRIDE EPOXY FORMULATIONS EXCEL IN THERMAL MANAGEMENT APPLICATIONS

Technical Library | 2020-10-14 14:33:36.0

Epoxy based adhesives are prevalent interface materials for all levels of electronic packaging. One reason for their widespread success is their ability to accept fillers. Fillers allow the adhesive formulator to tailor the electrical and thermal properties of a given epoxy. Silver flake allow the adhesive to be both electrically conductive and thermally conductive. For potting applications, heat sinking, and general encapsulation where high electrical isolation is required, aluminum oxide has been the filler of choice. Today, advanced Boron Nitride filled epoxies challenge alternative thermal interface materials like silicones, greases, tapes, or pads. The paper discusses key attributes for designing and formulating advanced thermally conductive epoxies. Comparisons to other common fillers used in packaging are made. The filler size, shape and distribution, as well as concentration in the resin, will determine the adhesive viscosity and rheology. Correlation's between Thermal Resistance calculations and adhesive viscosity are made. Examples are shown that determination of thermal conductivity values in "bulk" form, do not translate into actual package thermal resistance. Four commercially available thermally conductive adhesives were obtained for the study. Adhesives were screened by shear strength measurements, Thermal Cycling ( -55 °C to 125 °C ) Resistance, and damp heat ( 85 °C / 85 %RH ) resistance. The results indicate that low modulus Boron Nitride filled epoxies are superior in formulation and design. Careful selection of stress relief agents, filler morphology, and concentration levels are critical choices the skilled formulator must make. The advantages and limitations of each are discussed and demonstrated.

Epoxy Technology, Inc.

  1  

damping searches for Companies, Equipment, Machines, Suppliers & Information

Electronic Solutions

High Precision Fluid Dispensers
2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven
Software for SMT

Best Reflow Oven


SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...