Technical Library: dark solder pad after reflow (Page 1 of 1)

SMT Printing Collapse Causes and Countermeasures --KINGSUN

Technical Library | 2023-12-15 03:06:24.0

The first process in the SMT industry is solder paste printing. After the solder paste printing is completed, electronic components are attached to PCB pads through a SMT machine, and then reflow soldered. A preliminary PCB board is roughly processed. SMT is a combination of multiple devices, and such a line is called an SMT production line. Our common PCBA is processed through this process. In SMT technology, each process is very important, and poor quality can be caused by different process defects. Today, we are discussing the causes and countermeasures of SMT printing collapse.

DONGGUAN KINGSUN AUTOMATION TECHNOLOGY CO.,LTD

Analysis of Laminate Material Properties for Correlation to Pad Cratering

Technical Library | 2016-10-20 18:13:34.0

Pad cratering failure has emerged due to the transition from traditional SnPb to SnAgCu alloys in soldering of printed circuit assemblies. Pb-free-compatible laminate materials in the printed circuit board tend to fracture under ball grid array pads when subjected to high strain mechanical loads. In this study, two Pb-free-compatible laminates were tested, plus one dicycure non-Pb-free-compatible as control. One set of these samples were as-received and another was subjected to five reflows. It is assumed that mechanical properties of different materials have an influence on the susceptibility of laminates to fracture. However, the pad cratering phenomenon occurs at the layer of resin between the exterior copper and the first glass in the weave. Bulk mechanical properties have not been a good indicator of pad crater susceptibility. In this study, mechanical characterization of hardness and Young’s modulus was carried out in the critical area where pad cratering occurs using nano-indentation at the surface and in a cross-section. The measurements show higher modulus and hardness in the Pb-free compatible laminates than in the dicy-cured laminate. Few changes are seen after reflow – which is known to have an effect -- indicating that these properties do not provide a complete prediction. Measurements of the copper pad showed significant material property changes after reflow.

CALCE Center for Advanced Life Cycle Engineering

A High Thermal Conductive Solderable Adhesive

Technical Library | 2016-11-17 14:37:41.0

With increasing LED development and production, thermal issues are becoming more and more important for LED devices, particularly true for high power LED and also for other high power devices. In order to dissipate the heat from the device efficiently, Au80Sn20 alloy is being used in the industry now. However there are a few drawbacks for Au80Sn20 process: (1) higher soldering temperature, usually higher than 320°C; (2) low process yield; (3) too expensive. In order to overcome the shortcomings of Au80Sn20 process, YINCAE Advanced Materials, LLC has invented a new solderable adhesive – TM 230. Solderable adhesives are epoxy based silver adhesives. During the die attach reflow process, the solder material on silver can solder silver together, and die with pad together. After soldering, epoxy can encapsulate the soldered interface, so that the thermal conductivity can be as high as 58 W/mk. In comparison to Au80Sn20 reflow process, the solderable adhesive has the following advantages: (1) low process temperature – reflow peak temperature of 230°C; (2) high process yield – mass reflow process instead of thermal compression bonding process; (3) low cost ownership. In this paper we are going to present the die attach process of solderable adhesive and the reliability test. After 1000 h lighting of LED, it has been found that there is almost no decay in the light intensity by using solderable adhesive – TM 230.

YINCAE Advanced Materials, LLC.

RELIABLE NICKEL-FREE SURFACE FINISH SOLUTION FOR HIGHFREQUENCY-HDI PCB APPLICATIONS

Technical Library | 2020-08-05 18:49:32.0

The evolution of internet-enabled mobile devices has driven innovation in the manufacturing and design of technology capable of high-frequency electronic signal transfer. Among the primary factors affecting the integrity of high-frequency signals is the surface finish applied on PCB copper pads – a need commonly met through the electroless nickel immersion gold process, ENIG. However, there are well-documented limitations of ENIG due to the presence of nickel, the properties of which result in an overall reduced performance in high-frequency data transfer rate for ENIG-applied electronics, compared to bare copper. An innovation over traditional ENIG is a nickel-less approach involving a special nano-engineered barrier designed to coat copper contacts, finished with an outermost gold layer. In this paper, assemblies involving this nickel-less novel surface finish have been subjected to extended thermal exposure, then intermetallics analyses, contact/sheet resistance comparison after every reflow cycle (up to 6 reflow cycles) to assess the prevention of copper atoms diffusion into gold layer, solder ball pull and shear tests to evaluate the aging and long-term reliability of solder joints, and insertion loss testing to gauge whether this surface finish can be used for high-frequency, high density interconnect (HDI) applications.

LiloTree

Optimising Solder Paste Volume for Low Temperature Reflow of BGA Packages

Technical Library | 2020-09-23 21:37:25.0

The need to minimise thermal damage to components and laminates, to reduce warpage-induced defects to BGA packages, and to save energy, is driving the electronics industry towards lower process temperatures. For soldering processes the only way that temperatures can be substantially reduced is by using solders with lower melting points. Because of constraints of toxicity, cost and performance, the number of alloys that can be used for electronics assembly is limited and the best prospects appear to be those based around the eutectic in the Bi-Sn system, which has a melting point of about 139°C. Experience so far indicates that such Bi-Sn alloys do not have the mechanical properties and microstructural stability necessary to deliver the reliability required for the mounting of BGA packages. Options for improving mechanical properties with alloying additions that do not also push the process temperature back over 200°C are limited. An alternative approach that maintains a low process temperature is to form a hybrid joint with a conventional solder ball reflowed with a Bi-Sn alloy paste. During reflow there is mixing of the ball and paste alloys but it has been found that to achieve the best reliability a proportion of the ball alloy has to be retained in the joint, particular in the part of the joint that is subjected to maximum shear stress in service, which is usually the area near the component side. The challenge is then to find a reproducible method for controlling the fraction of the joint thickness that remains as the original solder ball alloy. Empirical evidence indicates that for a particular combination of ball and paste alloys and reflow temperature the extent to which the ball alloy is consumed by mixing with the paste alloy is dependent on the volume of paste deposited on the pad. If this promising method of achieving lower process temperatures is to be implemented in mass production without compromising reliability it would be necessary to have a method of ensuring the optimum proportion of ball alloy left in the joint after reflow can be consistently maintained. In this paper the author explains how the volume of low melting point alloy paste that delivers the optimum proportion of retained ball alloy for a particular reflow temperature can be determined by reference to the phase diagrams of the ball and paste alloys. The example presented is based on the equilibrium phase diagram of the binary Bi-Sn system but the method could be applied to any combination of ball and paste alloys for which at least a partial phase diagram is available or could be easily determined.

Nihon Superior Co. Ltd

  1  

dark solder pad after reflow searches for Companies, Equipment, Machines, Suppliers & Information