Technical Library: defect inspection system (Page 2 of 8)

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

DA-1200 THT automated inspection system service report

Technical Library | 2020-03-24 23:34:07.0

Installing time : November 24 to December 2 ,2019 Participants: Customer from (Elaraby , Egypt) Service engineer:Peter (1 Click SMT)

1 CLICK SMT TECHNOLOGY CO., Limited

An Automatic Surface Defect Inspection System for Automobiles Using Machine Vision Methods

Technical Library | 2020-08-27 01:15:10.0

Automobile surface defects like scratches or dents occur during the process of manufacturing and cross-border transportation. This will affect consumers' first impression and the service life of the car itself. In most worldwide automobile industries, the inspection process is mainly performed by human vision, which is unstable and insufficient. The combination of artificial intelligence and the automobile industry shows promise nowadays. However, it is a challenge to inspect such defects in a computer system because of imbalanced illumination, specular highlight reflection, various reflection modes and limited defect features. This paper presents the design and implementation of a novel automatic inspection system (AIS) for automobile surface defects which are the located in or close to style lines, edges and handles. The system consists of image acquisition and image processing devices, operating in a closed environment and noncontact way with four LED light sources. Specifically, we use five plane-array Charge Coupled Device (CCD) cameras to collect images of the five sides of the automobile synchronously. Then the AIS extracts candidate defect regions from the vehicle body image by a multi-scale Hessian matrix fusion method. Finally, candidate defect regions are classified into pseudo-defects, dents and scratches by feature extraction (shape, size, statistics and divergence features) and a support vector machine algorithm. Experimental results demonstrate that automatic inspection system can effectively reduce false detection of pseudo-defects produced by image noise and achieve accuracies of 95.6% in dent defects and 97.1% in scratch defects, which is suitable for customs inspection of imported vehicles.

Nanjing University

Bare PCB inspection for Track cut, Track Short and Pad Damage using simple Image Processing Operations

Technical Library | 2021-05-06 13:48:05.0

In this paper most commonly occurring Bare PCB defects such as Track Cut, Track short and Pad Damages are detected by Image processing techniques. Reference PCB without having any defects is compared with test PCB having defects to identify the defects and x-y coordinates of the center of the defects along with radii are obtained using Difference of Gaussian method and location of the individual type of defects are marked either by similar color or different colors. Result Analysis includes time taken for the inspection of a single defect, multiple similar defects, and multiple different defects. Time taken is ranging from 1.674 to 1.714 seconds if the individual type of defects are marked by different colors and 0.670 to 0.709 seconds if all the identified defects are marked by the same colors.

Vidya Vikas Institute Of Engineering And Technology

A Printed Circuit Board Inspection System With Defect Classification Capability

Technical Library | 2013-08-15 13:12:11.0

An automated visual PCB inspection is an approach used to counter difficulties occurred in human’s manual inspection that can eliminates subjective aspects and then provides fast, quantitative, and dimensional assessments. In this study, referential approach has been implemented on template and defective PCB images to detect numerous defects on bare PCBs before etching process, since etching usually contributes most destructive defects found on PCBs. The PCB inspection system is then improved by incorporating a geometrical image registration, minimum thresholding technique and median filtering in order to solve alignment and uneven illumination problem. Finally, defect classification operation is employed in order to identify the source for six types of defects namely, missing hole, pin hole, underetch, short-circuit, mousebite, and open-circuit.

Universiti Teknologi Malaysia

Characterization of Solder Defects on Package on Packages with AXI Systems for Inspection Quality Improvement

Technical Library | 2016-05-30 22:24:00.0

As a part of series of studies on X-Ray inspection technology to quantify solder defects in BGA balls, we have conducted inspection of 3 level POP package by using a new AXI that capable of 3D-CT imaging. The new results are compared with the results of earlier AXI measurements. It is found that 3D measurements offer better defect inspection quality, lower false call and escapes.

Flex (Flextronics International)

Advanced modelling technique achieves near to zero set up time and minimal tuning

Technical Library | 2015-04-29 03:29:56.0

Statistical Appearance Modelling technology enables an AOI system to “learn real world variation” based on operator interaction with inspection task results. This provides an accurate statistical description of normal variation in a product. With modelling technology, the user does not have to anticipate potential defects as the system will “flag” anything outside the “normal production range”. And, since the system is programmed with real production variation, it is sensitive to small subtle changes enabling reliable defect detection. Autonomous prediction of process variation enables an AOI system to be set up from a single PCB with production-ready performance. Setup time can be

CyberOptics Corporation

Detection of PCB Soldering Defects using Template Based Image Processing Method

Technical Library | 2021-04-15 14:49:27.0

In this study, a predefined template-based image processing system is proposed to automatically detect of PCB soldering defects that negatively affect circuit operation. The proposed system consists of a scaled inspection structure, a camera, an image processing algorithm merged with Fuzzy and template guided inspection process. The prototype is produced using a plastic material, depending on the focal length of the camera and the PCB size. Image processing step comprises two steps. Firstly, solder joints are determined and boxed using Fuzzy C-means clustering algorithm.

Selcuk University

An Automatic Optical Inspection System for the Diagnosis of Printed Circuits Based on Neural Networks

Technical Library | 2021-11-22 20:32:10.0

The aim of this work is to define a procedure to develop diagnostic systems for Printed Circuit Boards, based on Automated Optical Inspection with low cost and easy adaptability to different features. A complete system to detect mounting defects in the circuits is presented in this paper. A low cost image acquisition system with high accuracy has been designed to fit this application. Afterward, the resulting images are processed using the Wavelet Transform and Neural Networks, for low computational cost and acceptable precision. The wavelet space represents a compact support for efficient feature extraction with the localization property. The proposed solution is demonstrated on several defects in different kind of circuits.

Vienna University of Technology [TU Wien]

True Height Measurement in Solder Paste Inspection

Technical Library | 2015-04-29 03:48:39.0

SPI equipment is routinely used in Printed Circuit Board (PCB) manufacturing to monitor and control one of the most crucial steps affecting the finished quality of circuit board. Solder paste deposition is the key process in board assembly operations using SMT techniques. Our LSM™ system was the industry's first popular method of manually inspecting solder paste; our SE systems revolutionized SMT production by offering an automated method for performing in-process 3D inspection on the assembly line. SPI systems measure the height and volume of the solder pads before the components are applied and the solder melted, and when used properly, can reduce the incidence of solder-related defects to statistically insignificant amounts. Critical to the SPI measurement is the accuracy of the height measurement because that has a direct correlation with solder volume and defects.

CyberOptics Corporation


defect inspection system searches for Companies, Equipment, Machines, Suppliers & Information

INSPECTION TECH
INSPECTION TECH

Our Company handle AOI (Auto Optical Inspection) and SPI (Solder Paste Inspection) Machines.

Equipment Dealer / Broker / Auctions

Hwaseong-si, Gyeonggi-do, Korea
Hwaseong-si, South Korea

Phone: +82-1029254936