Technical Library | 2024-02-05 17:51:01.0
Objective: Drying = reducing the humidity in PCB before soldering Preventing delamination caused by thermal stress after moisture absorption Methods: Drying in convection and/ or vacuum oven Parameters subject to material type, soldering surface, layer count, time to soldering, layout (copper-plated areas)
Technical Library | 2016-05-12 16:29:40.0
Advances in miniaturized electronic devices have led to the evolution of microvias in high density interconnect (HDI) circuit boards from single-level to stacked structures that intersect multiple HDI layers. Stacked microvias are usually filled with electroplated copper. Challenges for fabricating reliable microvias include creating strong interface between the base of the microvia and the target pad, and generating no voids in the electrodeposited copper structures. Interface delamination is the most common microvia failure due to inferior quality of electroless copper, while microvia fatigue life can be reduced by over 90% as a result of large voids, according to the authors’ finite element analysis and fatigue life prediction. This paper addresses the influence of voids on reliability of microvias, as well as the interface delamination issue.
Technical Library | 2024-09-02 17:01:54.0
A printed circuit board (PCB) is an integral component of any electronic product and is among the most challenging components to recycle. While PCB manufacturing processes undergo generations of innovation and advancement with 21st century technologies, the recycling of PCBs primarily employs 1920's shredding and separation technologies. There is a critical need for alternative PCB recycling routes to satisfy the increasing environmental demands. Previous work has developed an environmentally benign supercritical fluid process that successfully delaminated the PCB substrates and separated the PCB layers. While this work was successful in delamination of the PCB substrates, further understanding is needed to maximize the interactions between the supercritical fluid and PCB for an optimal processing scenario. As such, this research presents an exploratory study to further investigate the supercritical fluid PCB recycling process by using supercritical carbon dioxide and an additional amount of water to delaminate PCB substrates. The focus of this study is to test delamination success at low temperature and pressure supercritical conditions in comparison to the previous studies. Furthermore, material characterization methods, such as differential scanning calorimetry, dynamic mechanical analysis, and Fourier transform infrared spectroscopy, are included to study the delaminating mechanisms. Results from the recycling process testing showed that the PCB substrates delaminated easily and could be further separated into copper foils, glass fibers and polymers. Surprisingly, the material characterization suggested that there were no significant changes in glass transition temperature, crosslink density, and FTIR spectra of the PCBs before and after the supercritical fluid process.
Technical Library | 2024-09-02 17:31:09.0
The cracking and delamination of printed circuit boards (PCB) during exposure to elevated thermal exposure, such as reflow and rework, have always been a concern for the electronics industry. However, with the increasing spread of Pb-free assembly into industries with lower volume and higher complexity, the occurrence of these events is increasing in frequency. Several telecom and enterprise original equipment manufacturers (OEMs) have reported that the robustness of their PCBs is their number one concern during the transition from SnPb to Pb-free product. Cracking and delamination within PCBs can be cohesive or adhesive in nature and can occur within the weave, along the weave, or at the copper/epoxy interface (see Figure 1). The particular role of moisture absorption and other PCB material properties, such as out of plane expansion on this phenomenon is still being debated.
Technical Library | 2022-09-25 20:18:33.0
Printed circuit board (PCB) bending and/or flexing is an unavoidable phenomenon that is known to exist and is easily encountered during electronic board assembly processes. PCB bending and/or flexing is the fundamental source of tensile stress induced on the electronic components on the board assembly. For more brittle components, like ceramic-based electronic components, micro-cracks can be induced, which can eventually lead to a fatal failure of the components. For this reason, many standards organizations throughout the world specify the methods under which electronic board assemblies must be tested to ensure their robustness, sometimes as a pre-condition to more rigorous environmental tests such as thermal cycling or thermal shock.
Technical Library | 2009-04-30 18:06:24.0
This presentation surveys the most significant via and via-related laminate failure mechanisms from past to present using data from current induced thermal cycling (CITC) testing, failure analysis, and other sources. The relative life and failure modes of thru vias, buried vias, and microvias (stacked vs. non-stacked) are compared, along with the affect of structure, materials, and peak temperatures on the above. The origin of via-induced laminate failures such as "eyebrow cracks" and Pb free related internal delamination is also explored.
Technical Library | 2021-08-18 01:24:20.0
Flexible Hybrid Electronics combine the best characteristics of printed electronics and silicon ICs to create high performance, ultra-thin, physically flexible systems. New static and dynamic tests are being developed to evaluate the performance of these systems. Dynamic radius of curvature and torsional test results are presented for a flexible hybrid electronics system with a FleX Silicon-on-Polymer operational amplifier manufactured in an 180nm CMOS process with 4-levels of metal interconnect mounted on a PET substrate.
Technical Library | 2015-05-21 18:46:31.0
In this work the reliability of an embedded planar capacitor laminate under temperature and voltage stress is investigated. The capacitor laminate consisted of an epoxy-BaTiO3 composite sandwiched between two layers of copper. The test vehicle with the embedded capacitors was subjected to a temperature of 125oC and a voltage bias of 200 V for 1000 hours. Capacitance, dissipation factor, and insulation resistance were monitored in-situ. Failed capacitors exhibited a sharp drop in insulation resistance, indicating avalanche breakdown. The decrease in the capacitance after 1000 hours was no more than 8% for any of the devices monitored. The decrease in the capacitance was attributed to delamination in the embedded capacitor laminate and an increase in the spacing between the copper layers.
Technical Library | 2013-12-05 17:09:03.0
The functionality of electronic devices continues to increase at an extraordinary rate. Simultaneously consumers are expecting even more and in ever smaller packages. One enabler for shrinking electronics has been the flexible circuit board that allows the circuit board to fit a wide variety of shapes. Flexible printed circuits (FPC) have the capability to be very thin and can have unpackaged components directly attached using surface mount technology (SMT) and flip chip on flex technologies. Bare die can also be thinned and attached very close to the circuit board. However one caveat of high density flexible circuit boards with thin die is that they can be very fragile. The use of back side films and underfill can protect the die making circuits more robust. For underfill to work well it requires good adhesion to the circuit board which can mean that flux residues under the die normally must be removed prior to underfilling.
Technical Library | 2021-03-04 15:16:27.0
Out-of-plane wrinkling has a significant influence on the mechanical performance of composite laminates. Numerical simulations were conducted to investigate the progressive failure behavior of fiber-reinforced composite laminates with out-of-plane wrinkle defects subjected to axial compression. To describe the material degradation, a three-dimensional elastoplastic damage model with four damage modes (i.e., fiber tensile failure, matrix failure, fiber kinking/splitting, and delamination) was developed based on the LaRC05 criterion. To improve the computational efficiency in searching for the fracture angle in the matrix failure analysis, a high-efficiency and robust modified algorithm that combines the golden section search method with an inverse interpolation based on an existing study is proposed.