Technical Library | 2023-05-10 01:39:38.0
DPC (DirectPlatingCopper) thin film process is a method of prepare copper film using magnetron sputtering technology. This process is a process in which the copper target with the target material is placed in a true cavity chamber, and plasma is generated on the copper target surface by magnetron sputtering technology. The ions in the plasma are bombarded on the surface of the target, which is sputtered into fine particles and deposited on the substrate to form a copper film.
Technical Library | 2017-04-27 17:10:16.0
Using modern laser systems for the depanelization of circuit boards can create some challenges for the production engineer when it is compared to traditional mechanical singulation methods. Understanding the effects of the laser energy to the substrate material properly is essential in order to take advantage of the technology without creating unintended side effects. This paper presents an in-depth analysis of the various laser system operating parameters that were performed to determine the resulting substrate material temperature changes. A theoretical model was developed and compared to actual measurements. The investigation includes how the temperature increase resulting from laser energy during depaneling affects the properties of the PCB substrate, which varies from no measurable change to a lowering of the surface resistance of the cut wall depending on the cutting parameters.
Technical Library | 2019-08-15 13:31:52.0
Cracks in ceramic chip capacitors can be introduced at any process step during surface mount assembly. Thermal shock has become a "pat" answer for all of these cracks, but about 75 to 80% originate from other sources. These sources include pick and place machine centering jaws, vacuum pick up bit, board depanelization, unwarping boards after soldering, test fixtures, connector insulation, final assembly, as well as defective components. Each source has a unique signature in the type of crack that it develops so that each can be identified as the source of error.
Technical Library | 2014-08-14 17:58:41.0
High reliability applications for high performance computing, military, medical and industrial applications are driving electronics packaging advancements toward increased functionality with decreasing degrees of size, weight and power (SWaP) The substrate technology selected for the electronics package is a key enabling technology towards achieving SWaP. Standard printed circuit boards (PWBs) utilize dielectric materials containing glass cloth, which can limit circuit density and performance, as well as inhibit the ability to achieve reliable assemblies with bare semiconductor die components. Ceramic substrates often used in lieu of PWBs for chip packaging have disadvantages of weight, marginal electrical performance and reliability as compared to organic technologies. Alternative materials including thin, particle-containing organic substrates, liquid crystal polymer (LCP) and microflex enable SWaP, while overcoming the limitations of PWBs and ceramic. This paper will discuss the use of these alternative organic substrate materials to achieve extreme electronics miniaturization with outstanding electrical performance and high reliability. The effect of substrate type on chip-package interaction and resulting reliability will be discussed. Microflex assemblies to achieve extreme miniaturization and atypical form factors driven by implantable and in vivo medical applications are also shown.
Technical Library | 2016-01-12 11:03:35.0
With the pitch size of interconnect getting finer and finer, the bonding strength between flexible and rigid (e.g. PCB, ceramic) substrates becomes a serious issue because it is not strong enough to meet the customer’s requirement. Capillary underfill has been used to enhance the bonding strength between flexible and rigid substrates, but the enhancement is very limited, particularly for high temperature application. The bonding strength of underfilled flexible/rigid interconnect is dramatically decreased after being used at 180◦C, and the interconnects are weakened by the internal stress caused by the expansion of underfill at high temperatures. In order to resolve reliability issues of the interconnect between flexible/rigid substrates, solder joint encapsulant was implemented into the thermal compression bonding process, which was used to manufacture the interconnect between flexible/rigid substrates. Compared to the traditional process, the strength of the interconnect was doubled and the reliability was significantly improved in high temperature application.
Technical Library | 2023-07-04 17:31:22.0
Conformal Coatings are polymeric materials used to protect circuitry, parts, and related components. They are most commonly used to protect printed circuit boards (PCBs) and electronic devices. However, conformal coatings can be applied to a wide variety of materials, including metal, plastic, silicone, ceramics, glass, and even paper. We use the term "substrate" to refer to an object or material that's been coated with a conformal coating.
Technical Library | 2014-06-19 18:13:23.0
For high-density electronic packaging,the application of flip-chip solder joints has been well received in the microelectronics industry. High-lead(Pb) solders such as Sn5Pb95 are presently granted immunity from the RoHS requirements for their use in high-end flip-chip devices, especially in military applications. In flip-chip technology for consumer electronic products, organic substrates have replaced ceramic substrates due to the demand for less weight and low cost. However, the liquidus temperatures of high-Pb solders are over 300°C which would damage organic substrates during reflow because of the low glass transition temperature. To overcome this difficulty, the composite solder approach was developed...
Technical Library | 2017-06-15 00:44:19.0
Ceramics packages are being used in the electronics industry to operate the devices in harsh environments. In this paper we report a study on acoustic imaging technology for nondestructively inspecting underfill layers connecting organic interposers sandwiched between two ceramics substrates.First, we inspected the samples with transmission mode of scanning acoustic tomography (SAT) system, an inspection routine usually employed in assembly lines because of its simpler interpretation criteria: flawed region blocks the acoustic wave and appears darker. In this multilayer sample, this approach does not offer the crucial information at which layer of underfill has flaws. To resolve this issue, we use C-Mode Scanning in reflection mode to image layer by layer utilizing ultrasound frequencies from 15MHz to 120MHz. Although the sample is thick and contains at least 5 internal material interfaces, we are able to identify defective underfill layer interfaces.
Technical Library | 2022-09-25 20:18:33.0
Printed circuit board (PCB) bending and/or flexing is an unavoidable phenomenon that is known to exist and is easily encountered during electronic board assembly processes. PCB bending and/or flexing is the fundamental source of tensile stress induced on the electronic components on the board assembly. For more brittle components, like ceramic-based electronic components, micro-cracks can be induced, which can eventually lead to a fatal failure of the components. For this reason, many standards organizations throughout the world specify the methods under which electronic board assemblies must be tested to ensure their robustness, sometimes as a pre-condition to more rigorous environmental tests such as thermal cycling or thermal shock.
Technical Library | 2020-03-26 14:55:29.0
This paper introduces line confocal technology that was recently developed to characterize 3D features of various surface and material types at sub-micron resolution. It enables automatic microtopographic 3D imaging of challenging objects that are difficult or impossible to scan with traditional methods, such as machine vision or laser triangulation.Examples of well-suited applications for line confocal technology include glossy, mirror-like, transparent and multi-layered surfaces made of metals (connector pins, conductor traces, solder bumps etc.), polymers (adhesives, enclosures, coatings, etc.), ceramics (components, substrates, etc.) and glass (display panels, etc.). Line confocal sensors operate at high speed and can be used to scan fast-moving surfaces in real-time as well as stationary product samples in the laboratory. The operational principle of the line confocal method and its strengths and limitations are discussed.Three metrology applications for the technology in electronics product manufacturing are examined: 1. 3D imaging of etched PCBs for micro-etched copper surface roughness and cross-sectional profile and width of etched traces/pads. 2. Thickness, width and surface roughness measurement of conductive ink features and substrates in printed electronics applications. 3. 3D imaging of adhesive dots and lines for shape, dimensions and volume in PCB and product assembly applications.
1 |