Technical Library: diagnostics (Page 1 of 1)

Overview of Quality and Reliability Issues in the National Technology Roadmap for Semiconductors

Technical Library | 1999-08-05 10:27:43.0

This document is an update to the 1994 Quality and Reliability Roadmap issued in support of the 1994 National Technology Roadmap for Semiconductors. This report revisits the challenges, constraints, priorities, and research needs pertaining to quality and reliability issues. It also provides key project proposals that must be implemented to address concerns about reliability attainment and defect learning. An expanded section on test-to-test, diagnostics, and failure analysis; an edited version of the Product Analysis Forum Roadmap; and an appendix containing a draft report highlighting reliability issues is included.

SEMATECH

Electronic Does Not Equal Smart: Service Documentation and Brand Quality

Technical Library | 2018-02-01 00:31:48.0

This paper briefly summarizes the technologies underpinning the evolution in electrical system diagnosis and repair, which include schematic layout automation using prototypes and rule-based styling, instant language translation, 2D/3D view links with schematics, interactive diagnostic procedures, and dynamically-generated signal-tracing diagrams. These technologies empower after-sales service teams with state-of-the-art capabilities, which not only reduce costs but also improve brand quality in the eyes of its customers.

Mentor Graphics

Early Design Review of Boundary Scan in Enhancing Testability and Optimization of Test Strategy

Technical Library | 2018-08-01 11:25:59.0

With complexities of PCB design scaling and manufacturing processes adopting to environmentally friendly practices raise challenges in ensuring structural quality of PCBs. This makes it essential to have a good 'Design for Test' (DFT) to ensure a robust structural test. (...)During the course of the DFT review, can we realize a good test strategy for the PCBA. How can the test strategy of the PCBA be partitioned as to what portions of the design can be covered structurally and what is covered functionally, in a way that provides best diagnostics to discover faults

Keysight Technologies

Boundary Scan Advanced Diagnostic Methods

Technical Library | 2013-02-14 12:54:29.0

Boundary-scan (1149.1) technology was originally developed to provide a far easier method to perform digital DC testing to detect intra-IC interconnect assembly faults, such as solder shorts and opens. Today's advanced IC technology now includes high-speed differential interfaces that include AC or DC coupling components loaded on the printed circuit assembly. Simple stuck-at-high/low test methods are not sufficient to detect all assembly fault conditions, which includes shorts, opens and missing components. Improved diagnostics requires detailed circuit analysis, predictive assembly fault simulation and more complex testing to isolate and accurately detect all possible assembly faults... First published in the 2012 IPC APEX EXPO technical conference proceedings

Agilent Technologies, Inc.

Luceda Photonics Delivers a Silicon Photonics IC Solution in Tanner L-Edit.

Technical Library | 2017-04-06 16:50:56.0

Silicon photonics is an IC technology where data is transferred using light that is routed on the chip using optical waveguides (Figure 1). Silicon photonics is best known as a method to solve problems with high input/output bandwidth applications. For example, because of ever-growing bandwidth requirements in datacenters, the optical transmit and receive heads are being placed closer and closer to the board and the IC. But, designers also apply this technology to biosensors, medical diagnostics, and environmental monitoring. Regardless of the application, photonic ICs always need integration to electronic circuits and this results in unique challenges.

Mentor Graphics

An Automatic Optical Inspection System for the Diagnosis of Printed Circuits Based on Neural Networks

Technical Library | 2021-11-22 20:32:10.0

The aim of this work is to define a procedure to develop diagnostic systems for Printed Circuit Boards, based on Automated Optical Inspection with low cost and easy adaptability to different features. A complete system to detect mounting defects in the circuits is presented in this paper. A low cost image acquisition system with high accuracy has been designed to fit this application. Afterward, the resulting images are processed using the Wavelet Transform and Neural Networks, for low computational cost and acceptable precision. The wavelet space represents a compact support for efficient feature extraction with the localization property. The proposed solution is demonstrated on several defects in different kind of circuits.

Vienna University of Technology [TU Wien]

Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

Technical Library | 2020-04-08 22:57:04.0

Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

Washington State Magazine

What is an analog signature analyzer and how does it work?

Technical Library | 2020-11-19 20:35:26.0

Simultaneously with the first complex electronic circuits, the task of creating effective means of diagnosing and repairing them appeared. In previous decades, specialized programmable stands were used for diagnostics of serial electronic products, as well as various testers and probes for troubleshooting during their operation. But the dramatic increase in the density / cost factor, in parallel with the very rapid modification of electronic products, made programmable stands economically ineffective even in mass production. The use of traditional laboratory equipment (oscilloscopes, multimeters, etc.) requires power supply to the defective modules, which is often impossible and unsafe, since it can lead to failure of the working modules of the module. In addition, the use of this equipment requires documentation and highly qualified personnel. More automated and sophisticated signature analysis systems came to the rescue in solving this problem. A feature of these devices is that they allow you to test digital and analog assemblies without dismantling components and without supplying voltage.

Engineering Physics Center of MSU

Inkjet-Printed and Paper-Based Electrochemical Sensors

Technical Library | 2018-07-03 12:27:02.0

It is becoming increasingly more important to provide a low-cost point-of-care diagnostic device with the ability to detect and monitor various biological and chemical compounds. Traditional laboratories can be time-consuming and very costly. Through the combination of well-established materials and fabrication methods, it is possible to produce devices that meet the needs of many patients, healthcare and medical professionals, and environmental specialists. Existing research has demonstrated that inkjet-printed and paper-based electrochemical sensors are suitable for this application due to advantages provided by the carefully selected materials and fabrication method. Inkjet printing provides a low cost fabrication method with incredible control over the material deposition process, while paper-based substrates enable pump-free microfluidic devices due to their natural wicking ability. Furthermore, electrochemical sensing is incredibly selective and provides accurate and repeatable quantitative results without expensive measurement equipment. By merging each of these favorable techniques and materials and continuing to innovate, the production of low-cost point-of-care sensors is certainly within reach

Louisiana State University

  1  

diagnostics searches for Companies, Equipment, Machines, Suppliers & Information

Sell Your Used SMT & Test Equipment

High Precision Fluid Dispensers
Sell Used SMT & Test Equipment

High Throughput Reflow Oven
Circuit Board, PCB Assembly & electronics manufacturing service provider

Best Reflow Oven
Win Source Online Electronic parts

World's Best Reflow Oven Customizable for Unique Applications
PCB separator

Internet marketing services for manufacturing companies