Technical Library | 2021-11-15 07:08:00.0
The audio comprehensive tester can test consumer audio, automotive electronics and other audio products, such as mobile phones, headphones, speakers, players, power amplifiers, home cinemas, televisions, set-top boxes, automotive multimedia hosts, etc. It is suitable for rapid testing of production line and R & D testing. It can realize fast audio, simple and convenient operation, and support automatic testing. Support analog / digital input and analog output, up to 192K digital sampling rate, and multiple test functions, including audio output, signal acquisition, audio file analysis, etc.
Technical Library | 2019-04-07 23:34:10.0
Ingress Protection Test Chamber is used to determine the protection degree of product enclosures,the protection level provided by the enclosure is called IP code,our IP test chamber compeletely follow the standard IEC60529 and others. IP protection grade is an important index of electrical equipment safety protection. Protective-grade systems such as ip, which provide a method of classifying products in terms of dust-proof, waterproof and anti-collision levels of electrical equipment and packaging, which have been recognized by most European countries, as drafted by the International Electrotechnical Association (iec (international electro technical commission). And announced in ied529 (bs en 60529 / 1992) outer packing protection grade (ip code). The level of protection is expressed in terms of IP followed by two numbers, which are used to define the level of protection. The first number indicates the extent of the equipment‘s resistance to dust, or the degree to which people are protected from harm in sealed environments. I represents a level that prevents solid foreign matter from entering, with a maximum level of 6; The second number indicates the extent to which the equipment is waterproof. P represents the level of protection against influent and the highest level is 8. Such as the protection level of the motor ip65. Contact electrical equipment protection and external material protection level (first digit) Electrical equipment waterproof protection level (second digit) . IP is the international code used to identify the protection grade ip grade consists of two numbers, the first number for dust, and the second number for waterproof, the larger the number means the better protection level.
Technical Library | 2023-11-20 18:49:11.0
Non-destructive testing during the manufacture of printed wiring boards (PWBs) has become ever more important for checking product quality without compromising productivity. Using x-ray inspection, not only provides a non-destructive test but also allows investigation within optically hidden areas, such as the quality of post solder reflow of area array devices (e.g. BGAs, CSPs and flip chips). As the size of components continues to diminish, today's x-ray inspection systems must provide increased magnification, as well as better quality x-ray images to provide the necessary analytical information. This has led to a number of x-ray manufacturers offering digital x-ray inspection systems, either as standard or as an option, to satisfy these needs. This paper will review the capabilities that these digital x-ray systems offer compared to their analogue counterparts. There is also a discussion of the various types of digital x-ray systems that are available and how the use of different digital detectors influences the operational capabilities that such systems provide.
Technical Library | 2010-05-20 17:17:03.0
As several industry pundits have expressed in recent years: "the era of 'one test method fits all' seems well behind us." For most test managers with even a modest mix of products, trying to formulate a test policy/philosophy has become a tricky balancing act at the best of times. James Stanbridge, Sales Manager UK for JTAG Technologies, and Steve Lees Managing Director of ATE Solutions look at the options.
Technical Library | 2012-12-14 14:17:56.0
This article provides practical and affordable Design-for- Test (DFT) and Design-for-Inspection (DFI) methods that will have a positive impact on product costs, yield, reliability, and time-to-market. The properties of testability (including controllability and observability) will be analysed as they relate to analogue and digital design rules and their cause/effect, as well as the electrical and physical characteristics of proper PCB design.
Technical Library | 1999-07-20 11:00:12.0
It's quite common for a power supply (PSU) designer to work with a circuit designer to realize a system design compliant with international EMC regulations. PSU designers will be well aware of the requirement of the power supply to provide clean DC voltage and not disturb the AC mains voltage. However, they may not have any idea of the noise that can potentially be introduced to the mains through the PSU by the target circuit. Likewise, the circuit designers (digital or analogue) may not know what attenuation the PSU will provide.
Technical Library | 2013-02-14 12:54:29.0
Boundary-scan (1149.1) technology was originally developed to provide a far easier method to perform digital DC testing to detect intra-IC interconnect assembly faults, such as solder shorts and opens. Today's advanced IC technology now includes high-speed differential interfaces that include AC or DC coupling components loaded on the printed circuit assembly. Simple stuck-at-high/low test methods are not sufficient to detect all assembly fault conditions, which includes shorts, opens and missing components. Improved diagnostics requires detailed circuit analysis, predictive assembly fault simulation and more complex testing to isolate and accurately detect all possible assembly faults... First published in the 2012 IPC APEX EXPO technical conference proceedings
Technical Library | 2008-02-26 15:02:19.0
More and more chip packages need multi-GHz RF structures to meet their performance targets. The ideal chip package needs to combine RF features with Digital features for these applications. They drive low-loss, controlled impedance transmission lines, flexibility in assigned signal and power layers, and clearances of various shapes in power layers. Building these features in a chip package is difficult without making the stack-up very thick or compromising the reliability of the product. In the present paper, we have designed and built a flip-chip package test vehicle (TV) to make new RF structures, using Z-axis interconnection (Zinterconnect) building blocks.
Technical Library | 2020-11-19 20:35:26.0
Simultaneously with the first complex electronic circuits, the task of creating effective means of diagnosing and repairing them appeared. In previous decades, specialized programmable stands were used for diagnostics of serial electronic products, as well as various testers and probes for troubleshooting during their operation. But the dramatic increase in the density / cost factor, in parallel with the very rapid modification of electronic products, made programmable stands economically ineffective even in mass production. The use of traditional laboratory equipment (oscilloscopes, multimeters, etc.) requires power supply to the defective modules, which is often impossible and unsafe, since it can lead to failure of the working modules of the module. In addition, the use of this equipment requires documentation and highly qualified personnel. More automated and sophisticated signature analysis systems came to the rescue in solving this problem. A feature of these devices is that they allow you to test digital and analog assemblies without dismantling components and without supplying voltage.
Technical Library | 2021-09-15 19:00:35.0
This paper presents the use of physics of failure (PoF) methodology to infer fast and accurate lifetime predictions for power electronics at the printed circuit board (PCB) level in early design stages. It is shown that the ability to accurately model silicon–metal layers, semiconductor packaging, printed circuit boards (PCBs), and assemblies allows, for instance, the prediction of solder fatigue failure due to thermal, mechanical, and manufacturing conditions. The technique allows a lifecycle prognosis of the PCB, taking into account the environmental stresses it will encounter during the period of operation. Primarily, it involves converting an electronic computer aided design (eCAD) circuit layout into computational fluid dynamic (CFD) and finite element analysis (FEA) models with accurate geometries. From this, stressors, such as thermal cycling, mechanical shock, natural frequency, and harmonic and random vibrations, are applied to understand PCB degradation, and semiconductor and capacitor wear, and accordingly provide a method for high-fidelity power PCB modelling, which can be subsequently used to facilitate virtual testing and digital twinning for aircraft systems and sub-systems.