Technical Library: dimensions of wave soldering (Page 1 of 2)

A Study of Lead-Free Wave Soldering

Technical Library | 2007-05-02 15:00:17.0

This brief study of lead-free wave soldering focuses upon copper dissolution and solder maintenance issues. Unfortunately, it is determined that waste and changeover costs can dramatically increase with lead-free wave soldering.

AIM Solder

Effect of Contact Time on Lead-Free Wave Soldering

Technical Library | 2008-08-28 22:50:11.0

The increasing use of lead-free solder has introduced a new set of process parameters when setting up wave solder equipment for effective soldering. Determining the proper flow characteristics of the solder wave for adequate hole fill is an essential step in achieving a reliable process. A variety of solder waves exist in the industry; each with advantages and disadvantages when performing lead-free wave soldering. One way to ensure adequate hole-fill is by increasing contact time at the Chip Wave.

Speedline Technologies, Inc.

Quieting the Noise: Quality Wave Soldering Depends on Control of Its Many Parameters.

Technical Library | 2008-01-24 16:19:43.0

The wave solder process is characterized by a large number of process parameters. To understand them all and their interactions is challenging, particularly when it comes to lead-free soldering. Wave soldering has a number of sub-processes, which include fluxing, preheating, soldering and cooling.

Vitronics Soltec

Equipment Impacts of Lead Free Wave Soldering

Technical Library | 2003-04-18 12:05:57.0

The popular tin (Sn) rich lead free solders are causing severe corrosion to many of the materials used in today's Wave Solder systems. Users are experiencing higher maintenance frequency and reduced life of wave solder machine components. This paper describes the effects of Sn rich solders in contact with various materials and discusses alternate methods to alleviate this problem.

Cookson Electronics

Lead-free Wave Soldering of Simple to Highly Complex Boards. Process Optimization

Technical Library | 2008-01-10 19:24:48.0

This research takes an in-depth look at the challenges encountered in developing a lead free wave soldering process based on the specific products as well as on specific materials. It attempts to provide the reader with the information necessary to make educated decisions in selecting materials and controlling various process parameters in order to execute a rational implementation strategy for a reliable and robust lead free wave soldering process.

Vitronics Soltec

Latent heat induced deformation of PCB substrate: Measurement and simulation

Technical Library | 2022-12-05 16:28:06.0

The work evaluates the impact of latent heat (LH) absorbed or released by a solder alloy during melting or solidification, respectively, on changes of dimensions of materials surrounding of the solder alloy. Our sample comprises a small printed circuit board (PCB) with a blind via filled with lead-free alloy SAC305. Differential scanning calorimetry (DSC) was employed to obtain the amount of LH per mass and a thermomechanical analyzer was used to measure the thermally induced deformation. A plateau during melting and a peak during solidification were detected during the course of dimension change. The peak height reached 1.6 μm in the place of the heat source and 0.3 μm in the distance of 3 mm from the source. The data measured during solidification was compared to a numerical model based on the finite element method. An excellent quantitative agreement was observed which confirms that the transient expansion of PCB during cooling can be explained by the release of LH from the solder alloy during solidification. Our results have important implications for the design of PCB assemblies where the contribution of recalescence to thermal stress can lead to solder joint failure.

Czech Technical University in Prague

Contamination Profile of Printed Circuit Board Assemblies in Relation to Soldering Types and Conformal Coating

Technical Library | 2017-12-11 22:31:06.0

Typical printed circuit board assemblies (PCBAs) processed by reflow, wave, or selective wave soldering were analysed for typical levels of process related residues, resulting from a specific or combination of soldering process. Typical solder flux residue distribution pattern, composition, and concentration are profiled and reported. Presence of localized flux residues were visualized using a commercial Residue RAT gel test and chemical structure was identified by FT-IR, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode setup. Localized extraction of residue was carried out using a commercial C3 extraction system. Results clearly show that the amount and distribution of flux residues are a function of the soldering process, and the level can be reduced by an appropriate cleaning. Selective soldering process generates significantly higher levels of residues compared to the wave and reflow process. For conformal coated PCBAs, the contamination levels generated from the tested wave and selective soldering process are found to be enough to generate blisters under exposure to high humidity levels.

Technical University of Denmark

Effective Methods to Get Volatile Compounds Out of Reflow Process

Technical Library | 2016-02-11 18:26:43.0

Although reflow ovens may not have been dramatically changed during the last decade the reflow process changes step by step. With the introduction of lead-free soldering not only operation temperatures increased, but also the chemistry of the solder paste was modified to meet the higher thermal requirements. Miniaturization is a second factor that impacts the reflow process. The density on the assembly is increasing where solder paste deposit volumes decreases due to smaller pad and component dimensions. Pick and place machines can handle more components and to meet this high through put some SMD lines are equipped with dual lane conveyors, doubling solder paste consumption. With the introduction of pin in paste to solder through hole components contamination of the oven increased due to dripping of the paste.

Vitronics Soltec

Case Study on the Validation of SAC305 and SnCu Based Solders in SMT, Wave and Hand-soldering at the Contract Assembler Level

Technical Library | 2007-11-15 15:54:44.0

At the contractor level once a product is required to be soldered with lead-free solders all the processes must be assessed as to insure the same quality a customer has been accustomed to with a Sn63Pb37 process is achieved. The reflow, wave soldering and hand assembly processes must all be optimized carefully to insure good joint formation as per the appropriate class of electronics with new solder alloys and often new fluxes.

Kester

Unlocking The Mystery of Aperture Architecture for Fine Line Printing

Technical Library | 2018-06-13 11:42:00.0

The art of screen printing solder paste for the surface mount community has been discussed and presented for several decades. However, the impending introduction of passive Metric 0201 devices has reopened the need to re-evaluate the printing process and the influence of stencil architecture. The impact of introducing apertures with architectural dimensions’ sub 150um whilst accommodating the requirements of the standard suite of surface mount connectors, passives and integrated circuits will require a greater knowledge of the solder paste printing process.The dilemma of including the next generation of surface mount devices into this new heterogeneous environment will create area ratio challenges that fall below todays 0.5 threshold. Within this paper the issues of printing challenging area ratio and their associated aspect ratio will be investigated. The findings will be considered against the next generation of surface mount devices.

ASM Assembly Systems GmbH & Co. KG

  1 2 Next

dimensions of wave soldering searches for Companies, Equipment, Machines, Suppliers & Information

Circuit Board, PCB Assembly & electronics manufacturing service provider

Component Placement 101 Training Course
Thermal Interface Material Dispensing

Stencil Printing 101 Training Course
Void Free Reflow Soldering

Best Reflow Oven
SMT feeders

High Throughput Reflow Oven
Assembly Automation Technology

"回流焊炉"