Technical Library | 2016-02-11 18:26:43.0
Although reflow ovens may not have been dramatically changed during the last decade the reflow process changes step by step. With the introduction of lead-free soldering not only operation temperatures increased, but also the chemistry of the solder paste was modified to meet the higher thermal requirements. Miniaturization is a second factor that impacts the reflow process. The density on the assembly is increasing where solder paste deposit volumes decreases due to smaller pad and component dimensions. Pick and place machines can handle more components and to meet this high through put some SMD lines are equipped with dual lane conveyors, doubling solder paste consumption. With the introduction of pin in paste to solder through hole components contamination of the oven increased due to dripping of the paste.
Technical Library | 2007-12-27 11:41:37.0
The latest screen printing platforms unlock more of the potential from dual-lane processing. Simultaneous demands to enhance flexibility while increasing utilisation and overall throughput apply to manufacturers operating at virtually any point in the mix-volume continuum: capacity must work hard to deliver the required return. As these lean manufacturing principles hold sway from the US and Europe to the Far East, no modern assembler has a second to spare.
Technical Library | 2014-08-19 16:04:28.0
SMT assembly planning and failure analysis of surface mount assembly defects often include component warpage evaluation. Coplanarity values of Integrated Circuit packages have traditionally been used to establish pass/fail limits. As surface mount components become smaller, with denser interconnect arrays, and processes such package-on-package assembly become prevalent, advanced methods using dual surface full-field data become critical for effective Assembly Planning, Quality Assurance, and Failure Analysis. A more complete approach than just measuring the coplanarity of the package is needed. Analyzing the gap between two surfaces that are constantly changing during the reflow thermal cycle is required, to effectively address the challenges of modern SMT assembly.
1 |