Technical Library: electrical test tool (Page 1 of 7)

Vacuum Fluxless Reflow Technology for Fine Pitch First Level Interconnect Bumping Applications

Technical Library | 2023-01-17 17:58:36.0

Heterogeneous integration has become an important performance enabler as high-performance computing (HPC) demands continue to rise. The focus to enable heterogeneous integration scaling is to push interconnect density limit with increased bandwidth and improved power efficiency. Many different advanced packaging architectures have been deployed to increase I/O wire / area density for higher data bandwidth requirements, and to enable more effective die disaggregation. Embedded Multi-die Interconnect Bridge (EMIB) technology is an advanced, cost-effective approach to in-package high density interconnect of heterogeneous chips, providing high density I/O, and controlled electrical interconnect paths between multiple dice in a package. In emerging architectures, it is required to scale down the EMIB die bump pitch in order to further increase the die-to-die (D2D) communication bandwidth. Aa a result, bump pitch scaling poses significant challenges in the plated solder bump reflow process, e.g., bump height / coplanarity control, solder wicking control, and bump void control. It's crucial to ensure a high-quality solder bump reflow process to meet the final product reliability requirements. In this paper, a combined formic acid based fluxless and vacuum assisted reflow process is developed for fine pitch plated solder bumping application. A high-volume production (HVM) ready tool has been developed for this process.

Heller Industries Inc.

Wedge Bonding Tool Selection

Technical Library | 2019-05-23 10:30:22.0

Increasing I/O numbers, device complexity, and product miniaturization requires high precision bonding tools, and sophisticated equipment. Careful consideration should be given to wedge geometry while selecting the tool for a fine pitch wire bonding application. Wire bonding is a process that creates an electrical connection between a die and a substrate or lead typically using gold or aluminum wire. Wedge bonding is a specific type of wire bonding that uses a wedge shaped tool to create the welds. The design of the wedge tool has changed very little over the past decade. The wire is fed at an angle through the back of the wedge. This angle is typically 30 to 60 degrees and is application dependent. Some applications require a higher feed angle due to package clearance issues. Some deep access applications require a 90 degree feed angle. In this configuration, the wire is fed through a hole in the shank of the wedge tool. Wire feed is shown in Figure 1.

ACI Technologies, Inc.

Use of Pelseal® 2078 Viton® Caulk in Decapsulation of Electronics Components

Technical Library | 2019-06-18 10:18:00.0

ACI Technologies is tasked with decapsulation of electronics components for testing and investigative purposes. In the normal method of decapsulation, an analyst will drill a small indentation, with a rotary tool, in the hermetic sealant material and then apply Nitric acid to eat through the polymeric encapsulant.

ACI Technologies, Inc.

Best Practices for Quality Control in Conformal Coating Applications

Technical Library | 2024-08-09 06:34:09.0

Quality control in conformal coating applications is vital for ensuring the reliability and longevity of electronic products. Conformal coatings protect printed circuit boards (PCBs) from environmental factors like moisture, dust, and chemicals. To maintain high standards, various inspection methods are employed throughout the coating process. Visual Inspection This is the first line of defense against defects. Inspectors look for uniform coverage, absence of bubbles, and proper curing. Training is essential to ensure that inspectors can identify subtle issues that may affect performance. UV Inspection Most conformal coatings contain a UV tracer, which makes the coating visible under ultraviolet light. UV inspection allows for easy detection of missed areas, ensuring complete coverage. This step is crucial for verifying that the coating has been applied correctly, especially in hard-to-see areas of the PCB. Automated Optical Inspection (AOI) AOI systems offer a more precise and consistent method for inspecting conformal coatings. They use cameras and specialized software to detect defects that might be missed by the human eye. AOI systems can inspect large volumes of PCBs quickly, making them ideal for high-production environments. Thickness Measurement The thickness of the conformal coating is critical for providing adequate protection without affecting the performance of the PCB. Tools such as micrometers, ultrasonic thickness gauges, and eddy current devices are used to measure the coating thickness. Consistent application is key to preventing issues like cracking or insufficient protection. Functional Testing Beyond visual and automated inspections, functional testing is necessary to ensure that the conformal coating does not interfere with the electrical performance of the PCB. This involves subjecting the coated PCB to environmental stress tests, such as thermal cycling, humidity, and salt spray, to assess its reliability in real-world conditions. Process Control and Documentation Implementing strict process controls is essential to maintaining quality. This includes regularly calibrating equipment, training operators, and documenting every step of the process. Proper documentation helps trace issues back to their source and prevents them from recurring. Conclusion Effective quality control in conformal coating applications ensures that PCBs are protected from environmental damage, thereby extending their lifespan and reliability. By employing a combination of visual, UV, and automated inspections, along with thickness measurement and functional testing, manufacturers can achieve the highest standards in coating quality.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

A Non-destructive Approach to Identify Intermittent Failure Locations on Printed Circuit Cards (PCC) that have been Temperature Cycle Tested

Technical Library | 2020-12-07 15:26:06.0

Temperature cycling testing is a method of accelerated life testing done to PCCs that are exposed to normal operation temperature variations over its lifetime. During the testing, intermittent "open" failures can first occur at the hot and cold extremes of the test, exposing weaknesses in the design and assembly. A poor/weak solder joint fatigues, a via trace or barrel cracks, loose connections or a component fails all causing an intermittent open. When not at extreme temperatures, the PCC assembly relaxes, the "open" closes creating electrical connectivity. If you are monitoring the PCC under test in-situ you will know that an intermittent failure has occurred, and the test could be stopped for inspection. If in-situ monitoring was not implemented, you would not know if there were intermittent failures or not. The PCC gets powered up and works fine at room temperature.

ACI Technologies, Inc.

Masking for Conformal Coatings

Technical Library | 2019-12-05 13:30:46.0

Conformal coatings are regularly employed to protect the surface of a soldered printed circuit board assembly from moisture, chemicals in the PCBA's service environment, and foreign objects or debris. Conformal coatings are nonconductive and therefore cannot be placed on any location where electrical contact will be required, such as connector pins, test points, and sockets. Conformal coatings are also not permitted on any mechanical interface location, such as mounting holes or brackets, to assure the proper fit between items in the final assembly. In order to apply conformal coatings to an assembly and comply with the restrictions on keep-out areas, masking is employed to protect those surfaces.

ACI Technologies, Inc.

Investigation of PCB Failure after SMT Manufacturing Process

Technical Library | 2019-10-21 09:58:50.0

An ACI Technologies customer inquired regarding printed circuit board(PCB) failures that were becoming increasingly prevalent after the SMT (surface mount technology) manufacturing process. The failures were detected by electrical testing, but were undetermined as to the location and specific devices causing the failures. The failures were suspected to be caused predominately in the BGA (ball grid array) devices located on specific sites on this 16 layer construction. Information that was provided on the nature of the failures (i.e., opens or shorts) included high resistance shorts that were occurring in those specified areas. The surface finish was a eutectic HASL (hot air solder leveling) and the solder paste used was a water soluble Sn/Pb(tin/lead).

ACI Technologies, Inc.

Selective Solder Paste Deposition Reliability Test Results.

Technical Library | 2007-06-21 17:03:16.0

The rapid assimilation of Ball Grid Array (BGA) and other Area Array Package technology in the electronics industry is due to the fact that this package type allows for a greater I/O count in a smaller area while maintaining a pitch that allows for ease of manufacture (...) While there have been several studies comparing these two attachment methods, this study highlights the effect of rework technique on the electrical characteristics and reliability of reworked BGAs.

BEST Inc.

Ingress Protection (IP) test for electronic enclosure test

Technical Library | 2019-04-07 23:34:10.0

Ingress Protection Test Chamber is used to determine the protection degree of product enclosures,the protection level provided by the enclosure is called IP code,our IP test chamber compeletely follow the standard IEC60529 and others. IP protection grade is an important index of electrical equipment safety protection. Protective-grade systems such as ip, which provide a method of classifying products in terms of dust-proof, waterproof and anti-collision levels of electrical equipment and packaging, which have been recognized by most European countries, as drafted by the International Electrotechnical Association (iec (international electro technical commission). And announced in ied529 (bs en 60529 / 1992) outer packing protection grade (ip code). The level of protection is expressed in terms of IP followed by two numbers, which are used to define the level of protection. The first number indicates the extent of the equipment‘s resistance to dust, or the degree to which people are protected from harm in sealed environments. I represents a level that prevents solid foreign matter from entering, with a maximum level of 6; The second number indicates the extent to which the equipment is waterproof. P represents the level of protection against influent and the highest level is 8. Such as the protection level of the motor ip65. Contact electrical equipment protection and external material protection level (first digit) Electrical equipment waterproof protection level (second digit) . IP is the international code used to identify the protection grade ip grade consists of two numbers, the first number for dust, and the second number for waterproof, the larger the number means the better protection level.

Symor Instrument Equipment Co.,Ltd

Screening for Counterfeit Electronic Components

Technical Library | 2010-03-11 19:33:47.0

Counterfeit products have been a growing problem worldwide, and the electronics industry has been no exception. Authentication of electronic components by electrical and physical testing can provide a cost-effective means of risk management, aimed at keeping counterfeits out of the supply chain. In this presentation, we will review sources of counterfeit components, and discuss the capabilities and limitations of test processes used for authentication. We will then present examples of component authentication using these tools.

Process Sciences, Inc.

  1 2 3 4 5 6 7 Next

electrical test tool searches for Companies, Equipment, Machines, Suppliers & Information