Technical Library: electricity (Page 5 of 15)

How to choose the material of PCB ?

Technical Library | 2019-12-30 02:09:39.0

How to choose the material of PCB ? The choice of PCB material must meet the design requirements, the quality of production and cost need to achieve a balance. The design requirements include electrical and institutional parts. This material problem is usually important when designing very high speed PCB boards (frequencies greater than GHz). For example, the commonly used FR-4 material may not be used when dielectric loss at several GHz frequencies, which can have a significant effect on signal attenuation . In the case of electrical, it is important to note whether the dielectric constant and the dielectric loss are combined at the designed frequency

PCBONLINE

Electrostatic Theory of Metal Whiskers.

Technical Library | 2014-07-31 16:36:59.0

Metal whiskers often grow across leads of electric equipment and electronic package causing current leakage or short circuits and raising significant reliability issues. The nature of metal whiskers remains a mystery after several decades of research. Here, the existence of metal whiskers is attributed to the energy gain due to electrostatic polarization of metal filaments in the electric field. The field is induced by surface imperfections: contaminations, oxide states, grain boundaries, etc. A proposed theory provides closed form expressions and quantitative estimates for the whisker nucleation and growth rates, explains the range of whisker parameters and effects of external biasing, and predicts statistical distribution of their lengths.

University of Toledo

Approaches for additive manufacturing of 3D electronic applications

Technical Library | 2020-09-16 21:24:56.0

Additive manufacturing processes typically used for mechanical parts can be combined with enhanced technologies for electronics production to enable a highly flexible manufacturing of personalized 3D electronic devices. To illustrate different approaches for implementing electrical and electronic functionality, conductive paths and electronic components were embedded in a powder bed printed substrate using an enhanced 3D printer. In addition, a modified Aerosol Jet printing process and assembly technologies adapted from the technology of Molded Interconnect Devices were applied to print circuit patterns and to electrically interconnect components on the surface of the 3D substrates.

Institute for Factory Automation and Production Systems (FAPS)

Electrical Performance of an Organic, Z-interconnect, Flip-Chip Substrate

Technical Library | 2007-10-25 18:39:07.0

More and more substrate designs require signals paths that can handle multi-gigahertz frequencies [1-3]. The challenges for organic substrates, in meeting these electrical requirements, include using high-speed, low-loss materials, manufacturing precise structures and making a reliable finished product. A new substrate technology is presented that addresses these challenges.

i3 Electronics

The Effects of PCB Fabrication on High-Frequency Electrical Performance

Technical Library | 2016-07-21 18:16:06.0

Achieving optimum high-frequency printed-circuit-board (PCB) performance is not simply a matter of specifying the best possible PCB material, but can be significantly impacted by PCB fabrication practices. In addition to appropriate circuit materials and circuit design configurations to meet target performance goals, a number of PCB material-related issues can affect final performance, including the use of soldermask, the PCB copper plating thickness, the conductor trapezoidal effect, and plating finish; understanding the effects of these material issues can help when fabricating high-frequency circuits for the best possible electrical performance.

Rogers Corporation

New Requirements for SIR Measurement

Technical Library | 2015-02-27 16:46:30.0

During the last period of newly assembled electrical devices (pcbs), new component types like LGA and QFN were also qualified as well as smaller passive components with reliability requirements based on the automotive and industrial industry. In the narrow gaps under components, residues can accumulate more by the capillary forces. This is not that much a surface resistance than an interface issue. Also that the flux residues under such types of components creates interaction with the solder resists from the pcb, as well as the component body was not completely described in the standard SIR measurement. On the other hand also, electrical influence with higher voltage creates new terms and conditions, in particular the combination of power and logic in such devices. The standard SIR measurement cannot analyze those combinations.The paper will discuss the requirements for a measurement process, and will give results. The influences of the pcb and component quality will also be discussed. Furthermore it will describe requirements for nc solder paste to increase the chemical/thermical/electrical reliability for whole devices

Heraeus

Characterize and Understand Functional Performance Of Cleaning QFN Packages on PCB Assemblies

Technical Library | 2022-12-19 18:59:51.0

Material and Process Characterization studies can be used to quantify the harmful effects that might arise from solder flux and other process residues left on external surfaces after soldering. Residues present on an electronic assembly can cause unwanted electrochemical reactions leading to intermittent performance and total failure. Components with terminations that extend underneath the package can trap flux residue. These bottom terminated components are flush with the bottom of the device and can have small solderable terminations located along the perimeter sides of the package. The clearance between power and ground render high electrical forces, which can propagate electrochemical interactions when exposed to atmospheric moisture (harsh environments). The purpose of this research is to predict and understand the functional performance of residues present under single row QFN component packages. The objective of the research study is to develop and collect a set of guidelines for understanding the relationship between ionic contamination and electrical performance of a BTC component when exposed to atmospheric moisture and the trade-offs between electrical, ionic contamination levels, and cleanliness. Utilizing the knowledge gained from undertaking the testing of QFN components and associated DOE, the team will establish a reference Test Suite and Test Spec for cleanliness.

iNEMI (International Electronics Manufacturing Initiative)

Hand Soldering, Electrical Overstress, and Electrostatic Discharge

Technical Library | 1999-05-09 13:07:16.0

This paper will give the reader a general understanding of EOS and ESD phenomena. It specifically addresses hand soldering's role in EOS and ESD and how to protect against and test for potential problems. It discusses how Metcal Systems address EOS and ESD concerns and how they differ from conventional soldering systems.

Metcal

Reliability Considerations of Electrically Conductive Adhesives.

Technical Library | 1999-07-21 09:00:55.0

Isotropic conductive adhesives are typically silver filled epoxy resins. Electronics assemblers have evaluated these materials for a variety of unique interconnect applications. The goal is a conductive polymer that exhibits similar reliability and performance to traditional solder while offering the benefits of a polymer structure such as low temperature processing and good thermal stability as well as the ability to bond a variety of substrates.

Henkel Electronic Materials

Pad Cratering Susceptibility Testing with Acoustic Emission

Technical Library | 2015-08-13 15:52:40.0

Pad cratering has become more prevalent with the switch to lead free solders and lead free compatible laminates. This mainly is due to the use of higher reflow temperature, stiffer Pb-free solder alloys, and the more brittle Pb-free compatible laminates. However, pad cratering is difficult to detect by monitoring electric resistance since pad cratering initiates before an electrical failure occurs. Several methods have been developed to evaluate laminate materials' resistance to pad cratering. Pad-solder level tests include ball shear, ball pull and pin pull. The detailed methods for ball shear, ball pull, and pin pull testing are documented in an industry standard IPC-9708. Bansal, et al. proposed to use acoustic emission (AE) sensors to detect pad cratering during four-point bend test. Currently there is an industry-working group working on test guidelines for acoustic emission measurement during mechanical testing.

Agilent Technologies, Inc.


electricity searches for Companies, Equipment, Machines, Suppliers & Information

See Your 2024 IPC Certification Training Schedule for Eptac

High Precision Fluid Dispensers
PCB Handling Machine with CE

Wave Soldering 101 Training Course
2024 Eptac IPC Certification Training Schedule

World's Best Reflow Oven Customizable for Unique Applications