Technical Library: electrochemical sensors (Page 1 of 1)

Electrochemical Sensors

Technical Library | 2022-01-19 17:25:29.0

Electrochemical sensors are a class of sensors in which the transducer component is the electrode. These methods are presently utilized in a wide assortment of business applications. These sensors are significant for some factors: the utilization of the electron for signal obtaining, which is known to be a perfect model for logical applications, without squander age; scaling down in versatile gadgets (test microvolume investigation); quick examination; and minimal effort of creation, permitting these techniques to be promoted (for example as business glucose sensors).

Chandigarh University

Non‑Invasive Monitoring Of Ph And Oxygen Using Miniaturized Electrochemical Sensors In An Animal Model Of Acute Hypoxia

Technical Library | 2022-01-19 17:50:20.0

pH and oxygen electrochemical sensors were evaluated in a ventilatory hypoxia rabbit model. The ventilator hypoxia protocol included 3 differential phases: basal (100% FiO2), the hypoxia-acidosis period (10% FiO2) and recovery (100% FiO2). Sensors were tested in blood tissue (ex vivo sensing) and in muscular tissue (in vivo sensing). pH electrochemical and oxygen sensors were evaluated on the day of insertion (short-term evaluation) and pH electrochemical sensors were also tested after 5 days of insertion (long-term evaluation). pH and oxygen sensing were registered throughout the ventilatory hypoxia protocol (basal, hypoxia-acidosis, and recovery) and were compared with blood gas metabolites results from carotid artery catheterization (obtained with the EPOC blood analyzer).

Universitat de Barcelona

An Electrochemical Sensor for Determination of Sulfite (SO32-) in Water Based on Molybdenum Disulfide Flakes/Nafion Modified Electrode

Technical Library | 2022-01-19 18:15:45.0

The assay for monitoring the content of sulfite ions (SO32−) is essentially important because sulfite has some seriously toxic effects on both environment and human health. For this, a SO32- electrochemical sensor was fabricated utilizing molybdenum disulfide (MoS2) and Nafion. The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) showed that MoS2 had excellently catalytical activity for the redox of SO32-.

Jining Medical University

Electrochemical Sensors For Nitrogen Species: A Review

Technical Library | 2021-02-17 22:41:48.0

This review provides an overview of electrochemical sensors for nitrogen species, especially, ammonium, nitrate, and nitrite. Due to the extensive anthropogenic activities, the concentration of nitrogen species has been dramatically increased in the environment. In particular, fertilizers containing ammonium and nitrate have been extensively used in agriculture where as nitrite-included additives or preservatives have been used in food industry. Since excessive nitrogen species have an adverse effect to environment and human health such as eutrophication and methemoglobinemia (blue baby syndrome), efforts have been made to develop efficient monitoring methods. On that account, the U.S Environmental Protection Agency (EPA) established the maximum contaminant level (MCL) for nitrate and nitrite to be 10mg/L nitrate-N and 1mg/L nitrite-N in drinking water, respectively. Typical analytical methods for nitrogen species are chromatography or spectrometry. However, these methods require expensive instrumentations, skilled operator, and considerable sample pretreatment and analysis time. As an alternative approach, electrochemical sensors have been explored to monitor nitrogen species owing to its simplicity, superior sensitivity, versatility, rapidity, field applicability, and selectivity. In this review, electrochemical based detection methods for nitrogen species especially ammonium, nitrate and nitrite are systematically discussed, including the fundamentals of electrochemical techniques, sensing mechanisms, and the performance of each sensor. doi.org/10.1016/j.snr.2020.100022

University of Connecticut

Printed Circuit Board (PCB) Technology for Electrochemical Sensors and Sensing Platforms

Technical Library | 2021-02-17 22:13:39.0

The development of various biosensors has revolutionized the healthcare industry by providing rapid and reliable detection capability. Printed circuit board (PCB) technology has a well-established industry widely available around the world. In addition to electronics, this technology has been utilized to fabricate electrical parts, including electrodes for different biological and chemical sensors. High reproducibility achieved through long-lasting standard processes and low-cost resulting from an abundance of competitive manufacturing services makes this fabrication method a prime candidate for patterning electrodes and electrical parts of biosensors. The adoption of this approach in the fabrication of sensing platforms facilitates the integration of electronics and microfluidics with biosensors. In this review paper, the underlying principles and advances of printed board circuit technology are discussed. In addition, an overview of recent advancements in the development of PCB-based biosensors is provided. Finally, the challenges and outlook of PCB-based sensors are elaborated. doi:10.3390/bios10110159

Louisiana State University

Inkjet-Printed and Paper-Based Electrochemical Sensors

Technical Library | 2018-07-03 12:27:02.0

It is becoming increasingly more important to provide a low-cost point-of-care diagnostic device with the ability to detect and monitor various biological and chemical compounds. Traditional laboratories can be time-consuming and very costly. Through the combination of well-established materials and fabrication methods, it is possible to produce devices that meet the needs of many patients, healthcare and medical professionals, and environmental specialists. Existing research has demonstrated that inkjet-printed and paper-based electrochemical sensors are suitable for this application due to advantages provided by the carefully selected materials and fabrication method. Inkjet printing provides a low cost fabrication method with incredible control over the material deposition process, while paper-based substrates enable pump-free microfluidic devices due to their natural wicking ability. Furthermore, electrochemical sensing is incredibly selective and provides accurate and repeatable quantitative results without expensive measurement equipment. By merging each of these favorable techniques and materials and continuing to innovate, the production of low-cost point-of-care sensors is certainly within reach

Louisiana State University

  1  

electrochemical sensors searches for Companies, Equipment, Machines, Suppliers & Information

Selective soldering solutions with Jade soldering machine

High Throughput Reflow Oven
SMT spare parts - Qinyi Electronics

Training online, at your facility, or at one of our worldwide training centers"
Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
IPC Training & Certification - Blackfox

High Resolution Fast Speed Industrial Cameras.


Training online, at your facility, or at one of our worldwide training centers"