Technical Library: electrolytics (Page 1 of 1)

Thermal Management of Electrolytic Capacitors

Technical Library | 1999-05-06 12:08:08.0

Input voltage capacitors are typically the parts that fail first in a high power circuit. Today's requirements for increasingly smaller packages is driving high component densities in power systems, as in all systems. As the package size...

Aavid Thermalloy, LLC

Filling of Microvias and Through Holes by Electrolytic Copper Plating –Current Status and Future Outlook

Technical Library | 2020-03-12 13:10:35.0

The electronics industry is further progressing in terms of smaller, faster, smarter and more efficient electronic devices. This continuous evolving environment caused the development on various electrolytic copper processes for different applications over the past several decades. (...) This paper describes the reasons for development and a roadmap of dimensions for copper filled through holes, microvias and other copper plated structures on PCBs.

Atotech

A Review of Models for Time-to-Failure Due to Metallic Migration Mechanisms

Technical Library | 2009-10-14 21:17:47.0

Electrochemical migration (ECM) is defined as the growth of conductive metal filaments across a printed circuit board (PCB) in the presence of an electrolytic solution and a DC voltage bias. ECM, also known as dendritic growth, is a critical issue in the electronics industry because the intermittent failure behavior of ECM is a likely root-cause of the high occurrence of field failures identified as no trouble found (NTF)/could not duplicate (CND)

DfR Solutions (acquired by ANSYS Inc)

Gold Embrittlement In Lead-Free Solder.

Technical Library | 2014-08-07 15:13:44.0

Gold embrittlement in SnPb solder is a well-known failure mechanism in electronic assembly. To avoid this issue, prior studies have indicated a maximum gold content of three weight percent. This study attempts to provide similar guidance for Pb-free (SAC305) solder. Standard surface mount devices were assembled with SnPb and SAC305 solder onto printed boards with various thicknesses of gold plating. The gold plating included electroless nickel immersion gold (ENIG) and electrolytic gold of 15, 25, 35, and 50 microinches over nickel. These gold thicknesses resulted in weight percentages between 0.4 to 7.0 weight percent.

DfR Solutions (acquired by ANSYS Inc)

High Throw DC Acid Copper Formulation for Vertical Continuous Electroplating Processes

Technical Library | 2018-10-31 20:35:49.0

The electronics industry has grown immensely over the last few decades owing to the rapid growth of consumer electronics in the modern world. New formulations are essential to fit the needs of manufacturing printed circuit boards and semiconductors. Copper electrolytes for high throwing power applications with high thermal reliability and high throughput are becoming extremely important for manufacturing high aspect ratio circuit boards.Here we discuss innovative DC copper metallization formulations for hoist lines and VCP (Vertical Continues Plating) applications with high thermal reliability and throughput for high aspect ratio PCB manufacturing

MacDermid Inc.

Via Fill and Through Hole Plating Process with Enhanced TH Microdistribution

Technical Library | 2019-07-17 17:56:34.0

The increased demand for electronic devices in recent years has led to an extensive research in the field to meet the requirements of the industry. Electrolytic copper has been an important technology in the fabrication of PCBs and semiconductors. Aqueous sulfuric acid baths are explored for filling or building up with copper structures like blind micro vias (BMV), trenches, through holes (TH), and pillar bumps. As circuit miniaturization continues, developing a process that simultaneously fills vias and plates TH with various sizes and aspect ratios, while minimizing the surface copper thickness is critical. Filling BMV and plating TH at the same time, presents great difficulties for the PCB manufactures. The conventional copper plating processes that provide good via fill and leveling of the deposit tend to worsen the throwing power (TP) of the electroplating bath. TP is defined as the ratio of the deposit copper thickness in the center of the through hole to its thickness at the surface. In this paper an optimization of recently developed innovative, one step acid copper plating technology for filling vias with a minimal surface thickness and plating through holes is presented.

MacDermid Inc.

Approaches to Overcome Nodules and Scratches on Wire Bondable Plating on PCBs

Technical Library | 2020-08-27 01:22:45.0

Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads. The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable. Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.

Teledyne DALSA

  1  

electrolytics searches for Companies, Equipment, Machines, Suppliers & Information



Best Reflow Oven
Win Source Online Electronic parts

Reflow Soldering 101 Training Course
PCB Handling Machine with CE

Stencil Printing 101 Training Course
PCB Handling with CE

Software for SMT placement & AOI - Free Download.
PCB Depanelizers

Private label coffee for your company - your logo & message on each bag!