Technical Library: electronic technician testing (Page 1 of 12)

THE LAST WILL AND TESTAMENT OF THE BGA VOID

Technical Library | 2023-01-17 17:22:28.0

The impact of voiding on the solder joint integrity of ball grid arrays (BGAs)/chip scale packages (CSPs) can be a topic of lengthy and energetic discussion. Detailed industry investigations have shown that voids have little effect on solder joint integrity unless they fall into specific location/geometry configurations. These investigations have focused on thermal cycle testing at 0°C-100°C, which is typically used to evaluate commercial electronic products. This paper documents an investigation to determine the impact of voids in BGA and CSP components using thermal cycle testing (-55°C to +125°C) in accordance with the IPC- 9701 specification for tin/lead solder alloys. This temperature range is more typical of military and other high performance product use environments. A proposed BGA void requirement revision for the IPC-JSTD-001 specification will be extracted from the results analysis.

Heller Industries Inc.

Solder Mask Dispensing For Electronics and Aerostructures

Technical Library | 2023-08-16 18:09:06.0

One of our customers involved with Electronics and Aerostructures requested a test to dispense Techspray Wondermask 2204 solder mask. The dispensing locations include large and small screw holes, single through-hole vias, and connector locations consisting of multiple through-hole vias. The process needed to run quickly and reliably.

GPD Global

Thermal Interface Material (TIM) Dispensing For Consumer Products

Technical Library | 2023-08-16 18:25:16.0

In one of our Consumer Electronics projects, a leader of networking technologies requested to test dispensing performance of a thermally conductive material, Fujipoly Sarcon SPG-50A. This material improves heat dissipation for higher frequency applications and reduces the negative effects of thermal resistance under heat, cold, humid, and thermal shock conditions. The customer's goal was to dispense a 1mm diameter dot with acceptable speed and consistency.

GPD Global

Understanding In-Circuit Testing (ICT) with PCBA ICT Testing Machine

Technical Library | 2023-11-14 02:36:41.0

Understanding In-Circuit Testing (ICT) with PCBA ICT Testing Machine In-Circuit Testing, commonly known as ICT, stands as a sophisticated and precise method within electronics manufacturing. It serves to evaluate the functionality and integrity of individual electronic components on a Printed Circuit Board (PCB). The process employs specialized equipment called ICT Testers, meticulously designed to pinpoint defects, shorts, opens, and other potential issues within the PCB assembly. The Crucial Role of PCBA ICT Testing Machine 1. Quality Assurance ICT is pivotal in ensuring the overall quality and reliability of electronic products. Early identification and rectification of defects in the production process help manufacturers avoid costly recalls, rework, and post-production issues. 2. Cost-Efficiency ICT significantly reduces manufacturing costs by identifying defects at an early stage. This results in fewer defective units reaching the end of the production line, minimizing waste and rework. 3. Faster Time-to-Market Manufacturers can expedite the production process with ICT by swiftly identifying and resolving issues. This leads to faster product launches, providing a competitive edge in the market. Unveiling the Functions of PCBA ICT Testing Machine The ICT Tester, the core of the In-Circuit Testing process, conducts a battery of tests on each PCB, including: 1. Continuity Testing Checks for open circuits, ensuring all connections are properly established. 2. Component Verification Verifies the presence and orientation of components, ensuring alignment with the PCB design. 3. Functional Testing Some ICT Testers execute functional tests, assessing electronic components' performance as per specifications. 4. Short Testing Identifies unintended connections or shorts between different components on the PCB. 5. Insulation Testing Checks for isolation between different circuits, ensuring no undesired connections or paths. 6. Programming and Configuration In some cases, ICT Testers are used to program and configure specific components on the PCB. Advantages of PCBA ICT Testing Machine 1. High Precision ICT offers unparalleled accuracy in defect detection, making it crucial in modern electronics manufacturing. 2. Speed and Efficiency ICT Testers enable rapid testing, allowing manufacturers to assess a large number of PCBs in a short time. 3. Customization ICT Tests can be tailored to suit specific PCB requirements, ensuring thorough evaluation of every design aspect. 4. Data Collection ICT Testers gather valuable data for process optimization and quality control. In-Circuit Testing (ICT) is fundamental in electronics manufacturing, safeguarding product quality, reducing costs, and accelerating time-to-market. The ICT Tester, with its precision and efficiency, positions manufacturers at the forefront of the highly competitive electronics industry. Embracing ICT is not just a choice; it's a necessity for manufacturers striving for excellence in their products. I.C.T is a leading manufacturer of full SMT line machines in the electronic manufacturing industry. Discover how we can enhance product quality, boost performance, and reduce costs. Contact us at info@smt11.com for reliable global supply, unparalleled efficiency, and superior technical service.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

SMT Stencil Design And Consideration Base on IPC

Technical Library | 2010-03-23 11:50:22.0

This document discuss how to design SMT stencil base on IPC-7525. Introduction: PCBA (Printed Circuit Board Assembly) is a segment of printed circuit board technology. This segment of printed circuit board industry is concentrated in assemble all the pieces of electronic industry to one piece before output them to market. This segment covers: interconnection technology, package design technology, system integration technology, board and system test technology

Association Connecting Electronics Industries (IPC)

Throughput vs. Wet-Out Area Study for Package on Package (PoP) Underfill Dispensing

Technical Library | 2012-12-17 22:05:22.0

Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.

ASYMTEK Products | Nordson Electronics Solutions

Selective Solder Paste Deposition Reliability Test Results.

Technical Library | 2007-06-21 17:03:16.0

The rapid assimilation of Ball Grid Array (BGA) and other Area Array Package technology in the electronics industry is due to the fact that this package type allows for a greater I/O count in a smaller area while maintaining a pitch that allows for ease of manufacture (...) While there have been several studies comparing these two attachment methods, this study highlights the effect of rework technique on the electrical characteristics and reliability of reworked BGAs.

BEST Inc.

Ingress Protection (IP) test for electronic enclosure test

Technical Library | 2019-04-07 23:34:10.0

Ingress Protection Test Chamber is used to determine the protection degree of product enclosures,the protection level provided by the enclosure is called IP code,our IP test chamber compeletely follow the standard IEC60529 and others. IP protection grade is an important index of electrical equipment safety protection. Protective-grade systems such as ip, which provide a method of classifying products in terms of dust-proof, waterproof and anti-collision levels of electrical equipment and packaging, which have been recognized by most European countries, as drafted by the International Electrotechnical Association (iec (international electro technical commission). And announced in ied529 (bs en 60529 / 1992) outer packing protection grade (ip code). The level of protection is expressed in terms of IP followed by two numbers, which are used to define the level of protection. The first number indicates the extent of the equipment‘s resistance to dust, or the degree to which people are protected from harm in sealed environments. I represents a level that prevents solid foreign matter from entering, with a maximum level of 6; The second number indicates the extent to which the equipment is waterproof. P represents the level of protection against influent and the highest level is 8. Such as the protection level of the motor ip65. Contact electrical equipment protection and external material protection level (first digit) Electrical equipment waterproof protection level (second digit) . IP is the international code used to identify the protection grade ip grade consists of two numbers, the first number for dust, and the second number for waterproof, the larger the number means the better protection level.

Symor Instrument Equipment Co.,Ltd

The Importance of On‐Site Training for PCB Assembly

Technical Library | 2017-08-28 17:17:04.0

If there is one way to guarantee world-class results in the electronics industry, it's by ensuring factory floor technicians enjoy consistent, regular training. Regular training ensures that assembly line technicians use standardized methods, generating efficiencies and improving the assembly process.

Power Design Services

Comparing Costs and ROI of AOI and AXI

Technical Library | 2013-08-07 21:52:15.0

PCB architectures have continued their steep trend toward greater complexities and higher component densities. For quality control managers and test technicians, the consequence is significant. Their ability to electrically test these products is compounded with each new generation. Probe access to high density boards loaded with micro BGAs using a conventional in-circuit (bed-of-nails) test system is greatly reduced. The challenges and complexity of creating a comprehensive functional test program have all but assured that functional test will not fill the widening gap. This explains why sales of automated-optical and automated X-ray inspection (AOI and AXI) equipment have dramatically risen...

Teradyne

  1 2 3 4 5 6 7 8 9 10 Next

electronic technician testing searches for Companies, Equipment, Machines, Suppliers & Information

Winsmart Electronic Co.,Ltd
Winsmart Electronic Co.,Ltd

Manufacturer of PCB depaneling and PCB soldering machines since 2005, products include CE approval V-groove PCB depanelizer, PCB router, PCB punching machine, laser depaneling, hot bar soldering machines and soldering robots.

Manufacturer

Liwu Industrial Park, Yuanzhou Town, Boluo
Huizhou, 30 China

Phone: +86-138-29839112