Technical Library | 2023-11-20 18:18:34.0
When x-ray inspection is used as part of a quality assurance program for any assembled device, steps must be taken early in the design stage to anticipate the use of x-ray inspection later in the development and production processes. This is a lesson that electronic assembly manufacturers learned years ago, and that medical device manufacturers are also discovering. There are several steps involved in learning how to interpret x-ray images, and how to design for x-ray inspection. First, manufacturers need to understand the nature of the x-ray shadow and its modalities; then they need to see how medical device developers and manufacturers are using x-ray inspection; finally, they need to consider taking measures early in the design process to ensure a clear, accurate image when the assembled device undergoes x-ray inspection.
Technical Library | 2024-04-22 20:16:01.0
The solid-state electronics industry faces relentless pressure to improve performance, increase functionality, decrease costs, and reduce design and development time. As a result, device feature sizes are now in the nanometer scale range and design life cycles have decreased to fewer than five years. Until recently, semiconductor device lifetimes could be measured in decades, which was essentially infinite with respect to their required service lives. It was, therefore, not critical to quantify the device lifetimes exactly, or even to understand them completely. For avionics, medical, military, and even telecommunications applications, it was reasonable to assume that all devices would have constant and relatively low failure rates throughout the life of the system; this assumption was built into the design, as well as reliability and safety analysis processes.
Technical Library | 2020-08-13 00:59:03.0
The paper will discuss the integration of 3D printing and inkjet printing fabrication technologies for microwave and millimeter-wave applications. With the recent advancements in 3D and inkjet printing technology, achieving resolution down to 50 um, it is feasible to fabricate electronic components and antennas operating in the millimeter-wave regime. The nature of additive manufacturing allows designers to create custom components and devices for specialized applications and provides an excellent and inexpensive way of prototyping electronic designs. The combination of multiple printable materials enables the vertical integration of conductive, dielectric, and semi-conductive materials which are the fundamental components of passive and active circuit elements such as inductors, capacitors, diodes, and transistors. Also, the on-demand manner of printing can eliminate the use of subtractive fabrication processes, which are necessary for conventional microfabrication processes such as photolithography, and drastically reduce the cost and material waste of fabrication.
Technical Library | 2016-11-23 00:26:50.0
As we wirelessly connect more and more devices to the Internet, electronics engineers face several challenges, including how to package a radio transmitter into their existing device real estate and how to make increasingly smaller devices. They’re also striving to meet consumer demand for Internet of Things (IoT) products that are ergonomically easy to use and unobtrusive to the environment. This whitepaper explores the challenges that come with designing connected devices into increasingly smaller products, specifically antenna integration, and how system-inpackage modules can help.
Technical Library | 2021-09-01 15:31:39.0
The long-standing trend in the electronics industry has been the miniaturization of electronic components. It is projected that this trend will continue as Original Equipment Manufacturers (OEMs) and Electronic Manufacturing Service (EMS) providers strive to reduce "real estate" on printed circuit boards. Typically, the miniaturization of components can be achieved by integration or size reduction. At present, size reduction is considered to be more cost effective and flexible than integration. Passive components, which are used in limiting current, terminating transmission lines and de-coupling switching noise, are the primary focus in size reduction due to their variety of uses.
Technical Library | 2007-10-18 13:42:45.0
To successfully achieve lead-free electronics assembly, each participant in the manufacturing process, from purchasing to engineering to maintenance to Quality/Inspection, must have a solid understanding of the changes required of them. This pertains to considerations regarding design, components, PWBs, solder alloys, fluxe s, printing, reflow, wave soldering, rework, cleaning, equipment wear & tear and inspection.
Technical Library | 2014-12-24 19:22:52.0
For centuries, the squeegee blade has been used throughout many applications for depositing viscous materials through screens and stencils to transfer images on to substrates, from cloth material to electronic circuit boards. One area of blade printing mechanics that have been reviewed many times is the angle of attack of the blade. Typically it has been tested from 45 degrees to 60 degrees to optimize the printing quality and efficiency. However, this typically ends up as a compromise, from fill characteristics (45 degrees) to print definition (60 degrees). This paper will present the revolutionary performance of the profiled squeegee blade, which has recently been developed to create a virtual multi angle of attack for unsurpassed process control for all types of stencil printing processes.
Technical Library | 2018-11-06 12:42:25.0
Solder paste is a homogeneous, stable suspension of solder powder particles suspended in a flux binder, and is one of the most important process materials today in surface mount technology (SMT). By varying the solder particle size, distribution and shape, as well as the other constituent materials, the rheology and printing performance of solder pastes can be controlled. Paste flow behavior is very important in defining the printing performance of any paste.The purpose of this paper is to study the rheological behavior of SAC (Sn-Ag-Cu) solder paste used for surface mount applications in the electronic industry. The reason why the rheological tests are presented in this paper are two critical sub-processes: aperture filling and paste withdraw. In this paper, we report on the investigation of the rheological profiles, the serrated cone-to-plate system was found as effective in parameter minimizing the wall-slip effect
Technical Library | 2019-01-20 22:47:35.0
With the rapid development of the electronics industry, more and more components such as integrated circuits and connectors, relays, power modules, etc. need to be packaged with IC tubes. The anti static ic tubes is actually a kind of pvc plastic(reference to : What are the materials for IC tubes) profile, the size varies with the shape of the installed product, the precision requirement is high, the wall thickness should be controlled within ±0.1mm, and the surface is required to have no impurity spots, smooth and transparent. The IC packaging tubes produced by Sewate Technology Co., Ltd. are extruded. The typical process flow is: extrusion, vacuum adsorption setting, traction, fixed length cutting and directional discharge, deburring, immersion antistatic liquid, drying, testing, packaging and storage
Technical Library | 2022-10-31 18:35:40.0
Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness. Due to the various advantages they offer, the use of Ball Grid Array packages is common across all industry sectors. They are also prone to process voiding issues. This study was performed to determine if vacuum assisted reflow process can help alleviate the voids in area array solder joints. Test parameters in this study largely focused on vacuum pressure level and vacuum dwell time.
Nordson Electronics Solutions makes reliable electronics an everyday reality. Our ASYMTEK, MARCH, and SELECT brands deliver precision fluid dispensing, conformal coating, plasma treatment and selective soldering equipment.
2762 Loker Ave West
Carlsbad, CA USA
Phone: 18002796835